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CHAPTER I

Introduction

Microstrip patch antennas offer considerable advantages in terms of weight, aero-

dynamic drag, cost, flexibility and observables over more conventional protruding

antennas. These flat patch antennas were first proposed over thirty years ago by

Deschamps [1] in the United States and Gutton and Baisinot [2] in France. Such

antennas have been analyzed and developed for planar as well as curved platforms.

However, the methods used in these designs employ gross approximations, suffer

from extreme computational burden or require expensive physical experiments. The

goal of this thesis is to develop accurate and efficient numerical modeling techniques

which represents actual antenna structures mounted on curved surfaces with a high

degree of fidelity.

1.1 Background

Microstrip patch antennas are conformal metallic elements printed on a grounded

dielectric substrate. Although a single patch element offers low gain as compared to

other antennas, an array of such elements offers considerable gain and pattern shaping

flexibility in a low profile package. Traditionally, such antennas were designed using

either expensive measurements or approximate formulae such as the cavity model.
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The cavity model [3] representsthe radiating structure by magnetic currenl walls

placed around the perimeter of the t)atch betweentile groundt)laneand the surface

of the substrate. The original cavity modelassumeda t)lanar-rectangular t)atch but

it hasbeenextended to cylindrical-rectangular patches[4, 5]. The cavity model has

proven quite accurate for radiation pattern calculations near resonance. However.

it is not suitable for operation away from resonancesinceit is basedupon a single

mode assumption. Additionally, it is not especially accurate for input impedance

calculationssinceprobe feedstypically excite multiple modeswithin the cavity. The

cavity model also ignores mutual and surfacewave coupling betweenantenna ele-

ments which is often a concernto array designerssince it results in parasitic energy

loss. Finally, the cavity model cannot be usedfor scattering calculations.

To overcomethe deficienciesof the cavity model, rigorous integral equation for-

mulations have been investigated [6]-[9]. Integral equations utilize an appropriate

Green's function and equivalent currents to represent the fields. Suchan approach

offersa rigorous representationof the local fields which includesmutual coupling and

surfacewave effects. However, this approach suffersfrom two primary drawbacks:

computational expenseand memorydemand. In particular, accuratecomputation of

the substrate Green'sfunction is both difficult and expensivesincean accurate eval-

uation of a Sommerfeldintegral is required [10]. Nevertheless,the integral equation

technique has beenextended to patch antennasprinted on a coated circular cylin-

der [11, 12], which requiresanextremely complexsubstratedyadic Green's function.

To reducethe memory demand and matrix fill time from O(N 2) to O(N), the Bi-

conjugate Gradient-Fast Fourier Transform (BiCG-FFT) may be used provided the

substrate is either flat or circular and uniform diseretization is used.

Although integral equation formulations have proven quite useful for design and



analysis of patch antennas, they require an assumption which limits their fidelity for

real-world antennas. Since a substrate Green's function is used in the formulation.

the substrate and underlying metallic surface must be infinite. In practice, antenna

designers place each radiator within a metallic cavity for suppression of unwanted

coupling [13]. These structures have finite substrates which require a substantially

more complex (and expensive) dyadic Green's function for their implementation.

Thus, integral equation formulations cannot efficiently model such arrays and hence

are of limited value in their design. To overcome the computational burden of integral

equations, an alternative methodology was first proposed separately by Silvester and

Hsieh [14] and McDonald and Wexler [15] which is now known as the Finite Element-

Boundary Integral (FE-BI) method. Jin and Volakis [16] adapted the FE-BI tech-

nique for planar cavity-backed patch antennas. In this approach, planar-rectangular

cavities were discretized using brick-shaped finite elements and the computational

domain was closed with a boundary integral which provided an exact mesh closure

condition. This method was found to be capable of modeling large complex arrays

of cavity-backed patch antennas with low memory and computational burden. In

addition to radiation by finite, possibly aperiodic, arrays of such structures, Jin and

Volakis also investigated their scattering behavior [17].

The FE-BI method has been applied to two-dimensionM [18], Body of Revolution

[19] and planar three-dimensional problems [16, 20]. The primary reason for the lack

of interest in applying the FE-BI approach to more general curved geometries is that

the method is no longer efficient in terms of memory or computational demand since

FFTs may not be used in conjunction with the boundary integral. However, this

technique can be applied to cylindrical bodies as well as planar geometries without

excessive computational cost. A formulation can be developed which yields compa-



rable performance by utilizing special finite elements, dyadic Green's functions and

the BiCG-FFT solver.

The FE-BI technique is both accurate and efficient for cavities embedded in a

ground plane or in a metallic cylinder. However, for any other platform, the com-

putational burden of the FE-BI approach is excessive since the BiCG-FFT solver

may not be used. In fact, the only dyadic Green's function available for arbitrary

surfaces is the free-space Green's function which would require both electric and

magnetic currents over the entire mesh boundary. Accordingly, Absorbing Bound-

ary Conditions (ABCs) have been proposed to provide an approximate mesh closure

condition which avoids the use of an expensive boundary integral. ABCs have been

used extensively for large scattering applications [21] but not for antennas. Unfortu-

nately, most ABCs assume a spherical mesh boundary [22, 23] which would result in

excessive unknowns. Chatterjee and Volakis [24, 25] have proposed conformal vec-

tor ABCs which follow the shape of the underlying body and in this work they are

applied to scattering and radiation by cavity-backed conformal antennas which are

recessed in a metallic cylinder. Conformal ABCs have also recently been proposed

by Stupfel [26]. Verification of the accuracy of the FE-ABC method for antenna ap-

plications is important since it is the only practical means of modeling large doubly

curved and possibly coated conformal arrays.

1.2 Overview

In this thesis, the FE method is extended to cavity-backed conformal antenna

arrays embedded in a circular, metallic, infinite cylinder. Both the boundary integral

and absorbing boundary mesh closure conditions will be used for terminating the

mesh. These two approaches will be contrasted and used to study the scattering and



radiation behavior of several useful antenna configurations. An important fl, alure of

this study will be to examine the effect of curvature and cavity size on the scattering

and radiation properties of wraparound conformal antenna arrays.

Chapter 2 introduces the fundamental electromagnetic principles used in the de-

velopment of the FE-BI and FE-ABC formulations. Included are Maxwell's equa-

tions, natural boundary conditions, the radiation condition, integral representation

of fields in terms of the equivalence principal and the definition of radar cross sec-

tion. In addition, the notation used throughout this thesis will be presented. An

introduction to numerical formulations will be presented along with a discussion of

matrix assembly. In particular, the integral equation and finite element methods will

be compared with respect to matrix cost.

In Chapter 3 the FE-BI formulation is developed for circular cylinders. Of par-

ticular interest are the newly introduced cylindrical shell elements and an efficient

evaluation of the cylindrical dyadic Green's function. Appropriate plane wave, inte-

rior source, far-zone field and input impedance formulae are given. The emphasis of

this formulation is on efficiency in terms of both memory and computational demand.

In view of this goal, the formulation will assume uniform surface gridding so that the

BiCG-FFT solver may be used. Also, large radius asymptotic formulae for the cylin-

drical dyadic Green's function will be presented along with the traditional modal

formulae and criteria will be established for the appropriate use of these formulae.

Chapter 4 introduces the conformal ABCs for mesh termination. The FE-ABC

equations are developed which utilize a novel mixed total/scattered field formulation.

This approach minimizes the potential error propagation usually associated with

a total field formulation applied in the exterior region while retaining the lower

computational burden of a total field formulation when used in the interior region.
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New conformal vector ABCs which were developed by Chatlerjee and \'olakis of

the Radiation Laboratory are used for mesh closure. Both first and second order

ABCs are presented for cylindrical-rectangular surfaces. The firsl order ABC always

produces a symmetric system while the second order ABC is asymmetric. The second

order ABC becomes symmetric for spherical boundaries and in the limit as the radius

of the ABC surface becomes large.

In Chapter 5 we investigate the scattering behavior of conformal antenna ar-

rays. The FE-BI method is used to study the effect of curvature on the scatter-

ing pattern and the resonant frequency. Both principal polarizations are discussed.

Also, the effect of cavity size is examined. One array of particular interest is the

wraparound array. The difference in scattering behavior between discrete and con-

tinuous wraparound arrays is examined and related to known creeping wave and

diffraction phenomena. The FE-ABC method will be compared to the FE-BI formu-

lation and in particular, the minimum ABC displacement from the cavity aperture

is determined. Such information is critical in minimizing the computational domain.

Also, the FE-ABC method will be shown to recover the FE-BI data for monostatic

scattering even when the transmitter/receiver is located behind the cylinder.

Chapter 6 provides a corresponding study of radiation characteristics for con-

formal patch antennas. The effect of curvature and cavity size will be determined

for both axially and circumferentially polarized antenna elements. Additionally, the

effect of curvature on the input impedance of both types of patches will be examined.

An example of pattern coverage will be given for discrete, continuous and collar-type

wraparound antennas. The pattern behavior as the number of antenna elements in-

creases is demonstrated. Finally, the FE-ABC method is compared with the FE-BI

method in order to determine the minimum required ABC displacement for accurate



radiation pattern calculations. The performanceof the FE-ABC method for input

impedancecomputations is also discussed.



Basic

CHAPTER II

Electromagnetics and Numerical Techniques

2.1 Basis Electromagnetics

James Clerk Maxwell presented a set of six, coupled, time-dependent equations

which completely describe all electromagnetic phenomena. Although Maxwell's equa-

tions allow for very general field variations in both space and time, in this work only

time-harmonic fields will be considered where a e+j_t time-dependency is assumed

and suppressed. In addition, in this work only fields in a linear, isotropie medium

will be considered. Accordingly, the following constitutive relations

5 = _ (2.1)

t_ = ,t_ (2.2)

have been used to develop Maxwell's equations in differential or point form

V × E = -ffi,-jkZI4 (2.3)

V × H = ._ + jkYfi. (2.4)

where /9 is the electric flux density, /_ is the electric field, /? is the magnetic flux

density, /4 is the magnetic field, _ is an impressed electric current and M/ is a

fictitious magnetic current which is included so that (2.3) and (2.4) are symmet-

ric. The medium is completely described by its intrinsic impedance (admittance)

8



Z = (_) = V/-_,e. where c and 11 denote the medium's permittivity and permeabil-

ity,. respectively.. The wavenumber is denoted by k = 2__:,_= _v"_-" where _ is the

wavelength and _ is the corresponding angular frequency. An important medium is

free-space where k = k0 - 2,_- _o = _ _x/-fiT_ with ko being the free-space wave length,

e0 = 8.8.54 x lO-12F/m, /2o = 4rr x lO-rH/rn and the intrinsic impedance (admit-

(')tance) is now denoted as Zo = g = _ 377fl.

Faraday's (2.3) and Amp_re-Maxwell's (2.4) Laws are not sufficient for the com-

plete specification of a general field. One of four dependent scalar equations must

also be chosen which may be derived from (2.3) and (2.4)

v. = po/¢ (2.5)

V. H = pro�# (2.6)

v. = -j p, (2.7)

v. = j p,, (2.8)

In these, p, is the electric charge density c(_--_) and likewise p_ denotes the fictitious

magnetic charge density w(_-_). The latter is not a physical quantity but its introduc-

tion is important for mathematical constructions. Evidently, (2.5) and (2.6) are a

statement of Gauss' Law in differential form whereas (2.7) and (2.8) are referred to

as the continuity or charge conservation equations. Typically, (2.3), (2.4) and either

(2.5) or (2.7) are used to determine the field quantities. Such a solution is, however,

not unique and will require the specification of additional constraints.

Application of Maxwell's equations (2.3) and (2.4) along with a derived equation

(2.5)-(2.8) will result in an infinite number of solutions. A unique solution is obtained

only after the imposition of various conditions such as boundary conditions, radia-

tion conditions, edge conditions and transition conditions. The natural boundary
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conditions satisfied by F_ and /] al any dielectric interface are [2T]

× (if,- ff_) = 0 (_,.lot

where the subscripts denote the different media which are joined at the interface

and 5 is the normal unit vector directed into medium one as shown in Figure '2.1.

Medium one is the external medium while medium two is the internal medium.

medium 1

_/////,/Z N

medium 2/

£I ' [LI'I

Figure 2.1: Material interface.

The first condition (2.9) states that the tangential components of the electric field

are continuous across the dielectric boundary while the tangential magnetic field

components are also continuous for a dielectric. Boundary conditions may also be

written in terms of normal field components

ft. e2/ 2)= 0 (2.11)
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which simply states that the normal components of both the electric and magnelic

fields are discontinuous if there is a discontinuity in the permittivity and permeabil-

it3". respectively. Another imporlant interface involves a dielectric (medium 1) and

perfect electric conductor (medium 2). The tangential electric field must now vanish

at such an interface

fi × E1 = 0 (2.13)

since a perfect electric conductor cannot sustain an internal field. Note that a surface

current may now flow along the interface

fix H1 = a_ (2.14)

Similar conditions for the normal field components now may support a surface charge

density. For perfect magnetic conductors, appropriate boundary conditions may be

determined via duality. For this work, open scattering and radiation problems will

be considered. Consequently, any valid and unique solution must also satisfy the

Sommerfeld radiation condition [28] which describes the field behavior at infinity

This simply states that the field is outgoing and of the form e-3kr/r as r ---. oe.

Faraday's Law (2.3) and Amp_re-Maxwell's Law (2.4) are coupled first order

partial differential equations (PDEs). However, these may be combined to yield a

single second order PDE in terms of/_ or H. Specifically, by taking the curl of one

of these and making use of the other, the following second-order PDE is obtained

These are commonly referred to as the vector wave equations. Solution of the wave

equation also requires sufficient boundary conditions for uniqueness.
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Direct solution of Maxwell's equations or the wave equalion is only possil_h' for

a few special conditions. As a consequence, equivalent source., arc often employ¢'d

in the solution of practical problems since often such an equivalenl problem may

be readily solved numerically. The surface equivalence principle states that any

field exterior to a given (possibly fictitious) surface may be exactly represented by

equivalent surface currents which are allowed to radiate into that external region.

These equivalent currents are given in terms of a jump discontinuity between the

total exterior (/_,, H,) and interior (/_2,/¢2) fields

fi × (/4,-/42) = J (2.17)

× = /2.1st

The radiated fields due to these equivalent currents are given by the integral expres-

sions

=_(_') x f,(¢'), v x c(R) dS' -jkz

fi(g') x _I(g') . V x _(R) dS' + jkY _fs

m

_z(_') x H(_").-G(R) dS'

(2.19)

,_(_') × _(_'). _(n) dS'

(2.20)

where R = I_'- F'I, _' denotes the observation point and _" is the integration point.

The surface on which the equivalence theorem is applied is denoted by S. In (2.19)

and (2.20), a dyadic Green's function is required which satisfies at least the radiation

condition (2.15). Such a Green's function is the free-space dyadic Green's function

which utilizes the corresponding scalar Green's function

e-Jk°n (2.22)
Go(R)- 47r R
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Note that use of (2.21) requires both equivalent currents (2.18). Alternatively, when

certain bodies such as an infinite metallic plane, cylinder or half plane is present,

a dyadic Green's function can be chosen which satisfies an additional boundary

condition such as the Dirchlet condition

fi xG1 =0 on S (2.23)

so that (2.19) and (2.20) may be written in terms of only' one current per field

expression

/_(T-_) = _; fi(_*') x E'(_'). V x _rl(R) dS' (2.24)

= × v × dS' (2.25)

The Neumann boundary condition is also useful

fi xVxG2=0 onS (2.26)

with the resulting field integral expressions in terms of only one current

E(r-') = -jkZ J_¢ fi(_")x H(_")'_2(R)dS' (2.27)

fI(_ = jkY_s fi(#') x E(_"). _2(R) dS' (2.28)

Such dyadic Green's functions are commonly referred to as a first kind dyadic Green's

function and a second kind dyadic Green's function, respectively [29].

Often, engineering quantities such as the radar cross section (RCS) and the ra-

diation pattern require evaluation of one of the previous integral expressions as the

observation point (¢') recedes to infinity. For example, the RCS is defined by

a = 4_rr 2 lim IE'(_')[

lg'( l (2.29)

where /_s(_ is the scattered field and /_i(_ is the incident field. The scattered

field may be defined by either (2.19), (2.24) or (2.27). Analytical expressions for
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these fields may sometimesbe obtained: however, the required currents arc often

determined via an appropriate numerical method.

2.2 Numerical Techniques

Determination of electromagnetic fields within a region typically involve either in-

tegral or partial differential equations. Such formulations may be written in operator

notation as

£u-f = 0 (2.30)

subject to appropriate boundary or transition conditions

B(u) = 0 (2.31)

within the domain (ft) and on its boundary (0f_). In these, the operator £ is based

either on an integral representation of the fields such as (2.19)-(2.20) or upon the

vector wave equation (2.16). The forcing function f is a known quantity while u,

which is often a field or current, is unknown. Unfortunately, very few analytical

solutions for (2.30) are available in electromagnetics. One such solution, the fields

due to a magnetic dipole in the presence of a metallic cylinder, will be used in

Chapter III to form the appropriate dyadic Green's function. However, most useful

electromagnetic scattering and radiation problems cannot be solved using analytical

methods. Rather, an approximate numerical solution is sought which in some way

closely resembles the exact solution. Two methods of formulating such an approxi-

mate solution are: the Rayleigh-Ritz method and the method of weighted residuals.

Both of these approaches are discussed by Zienkiewicz and Taylor in their classic

finite element method text [30].
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2.2.1 The Rayleigh-Ritz Method

The Rayleigh-Ritz method seeksa stationary point of a variational functional.

For operators which are self-adjoint and positive definite, tile stationary point of tile

following functional

1
F(fi) = _(£fi, fi)-(fi, f) (2.32)

is an approximate solution of (2.30). In (2.32), the inner product over the domain fl

of the two functions is defined as

(a,b) = faabdfl (2.33)

or for vector functions

=  dfl (2.34)

The choice of this inner product extends the validity of the variational expressions

to complex fields. The trial function, fi, is expanded in terms of N basis functions

N

fi = __,ujwj = {u} T {w} (2.35)
j=l

where wj are the basis functions and uj are the unknown expansion coefficients.

In (2.35), column data vectors are denoted with {.} while row data vectors involve

Substituting (2.35) into (2.32), the functional may now bea transposition {.}T.

written

=

This functional isminimized by allowing allpartialderivativeswith respect to the

coefficients,{u}, to vanish

0 F(fi) - 1 dill l{u}T/a{w}£widfl_/nwifdfl

= 0 (2.37)
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which may be written as a matrix system

= {a}

The elements of the matrix [v4] and excitation vector {b} are given by

A, 3 - /_ _L'i_W 3 df_

bi = /awif df_ (2.39)

A word of caution, unlike other branches of engineering, no physical significance may

be attached to the stationary point of the functional (2.32). In mechanical systems

for example, minimizing this functional represents minimization of the total potential

energy of the system. However, since electromagnetics involves complex quantities,

such a statement may not be asserted. Additionally, the variational formulation

given above requires a symmetric operator £ which is not always available in com-

putational electromagnetics (see for example the FE-ABC formulation in Chapter

IV). However, the method of weighted residuals does not require a symmetric op-

erator and is perhaps more familiar to electrical engineers since it does not involve

variational principles.

2.2.2 The Method of Weighted Residuals

The method of weighted residuals attempts to minimize the residual

= /::fi- f _> 0 (2.40)

where _ = 0 would imply that fi = u for all points within ft. Such a solution in

general cannot be obtained and it is more realistic to find a solution which satisfies

the minimal residual condition in some average or weighted sense

£[t,£{w} T{u}-tif] da=0 i= 1,2,3,...,N (2.41)
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In general, any testing function (ti) may be used; however, since these functions

modify the enforcement of the boundary conditions throughout the domain, tile

choice of testing functions effects the quality of the solution (2.41). One popular

testing procedure is called collocation or point matching. In this, the testing function

is a Dirac delta function, ti = _5(x - xi) which implies enforcement of the boundary

conditions only at discrete points e.g. xi, i = 1,2,3 ..... N . Another popular choice

is termed Galerkin's procedure. In this, the testing function is identical to the

expansion function used in (2.35) e.g. ti = wl and the weighted residual equation is

given by

which is identical to the Ritz procedure given above. In Galerkin's method, the

boundary conditions are satisfied throughout the computational domain in a least

squares sense.

2.2.3 Matrix Assembly

The construction of the system matrix (2.39) associated with either the Ritz or

Galerkin's formulation represents a significant portion of the overall computational

cost of either the moment method or the finite element method. However, these two

popular techniques have vastly different cost characteristics which is the primary

attraction of the finite element method for volume formulations. A general moment

method matrix requires the computation of all matrix entries which is a O(N 2)

process where N is the number of unknowns. These matrices are full since each

unknown couples with each other through the Green's function. On the other hand,

FE matrices are sparse due to the locality of the PDE formulation and hence each

degree of freedom interacts only with its neighbors. Such a matrix assembly process
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is O(('N) where C is a constant which depends on the type of finite elements used.

For typical finite elements used itl computational electromagnelics, this constat_l is

between twenty and forty. Therefore, the matrix build time (and nlemorv require-

ment) for a FE matrix grows only linearly with the problem size while tile build time

(and memory requirement) for a moment method matrix grows as the square of the

problem size. Since the number of unknowns increases roughly as tile cube of the

linear dimensions for volume formulations, an FE matrix grows as a cubic function

of the linear dimension while the corresponding volumetric moment method system

increases as the sixth power of the same linear dimensions.



CHAPTER III

Finite Element-Boundary Integral Method

The Finite Element (FE) Method is a computational technique which approxi-

mates a continuous boundary-value problem with a corresponding discrete problem.

The latter is then solved numerically, thus obtaining a solution which approximates

in some sense the original continuous problem. The FE method has been used in

mathematical physics since the 1940's. It was first coupled with an exact Boundary

Integral (BI) termination condition in an electromagnetics application by Silvester

and Hsieh [14] and McDonald and Wexler [15] in 1971 and 1972, respectively. Re-

cently, there has been renewed interest in the Finite Element-Boundary Integral

(FE-BI) method of electromagnetics principally due to the work of Jin and Volakis

[16], [17] and [20] who demonstrated the successful application of the method for

cavity-backed antennas. Their major contribution was coupling the FE-BI approach

with the Biconjugate Gradient-Fast Fourier Transform (BiCG-FFT) technique, thus

allowing high fidelity simulations with a low O(N) memory and computational de-

mand.

This chapter will extend the FE-BI method to cavities which are recessed in a

metallic circular cylinder of infinite extent. The boundary integral will employ uni-

form zoning and hence the BiCG-FFT solver may be employed to retain low mem-

19
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orv and O(.\'log 2 .V) compulational burden. We will firsl presenl lhv I:E lll_,'lhod

derivation starting with the vector wave equation and then proceeding with lhe i11-

troduction the boundary integral as an exact mesh truncation condition. An etticient

computational strategy for the admittance matrix will be presented along with ac-

curate expressions for interior and exterior source modeling. Finally, the computed

electric fields will be used to evaluate the far-zone fields and, if applicable, the inpul

impedance of patch antennas.

3.1 FE-BI Formulation

Consider a cavity recessed in an infinite metallic cylinder, shown in Figure 3.1.

The cavity walls are assumed to coincide with constant p-, ¢- and z-surfaces and the

cavity is filled with inhomogeneous material. Interior sources and lumped loads may

be present as well as surface metallization patterns.

The FE-BI system is developed directly from the inhomogeneous vector wave

equation (2.16). To generate a system of equations from (2.16), the method of

weighted residuals is applied which results in the symmetric inner product of a vector-

valued weight function and the vector wave equation as described in Chapter II. The

integro-differential equation is given by

£v×

-ko£,

v × _(p,¢,z)]/_(p, ¢, z) • l/Pi(p,¢,z)pdpdCdz

e_(p,¢,z)bT(p,¢,z), l_'i(p,¢,z)pdpdCdz =

[a_'(p, ¢, z)]- £, v ×L "I/Vi(P,O,z)pdpdCdz

-jkoZo Iv, fi(P'O'z) " l_i(p,C,z)pdpdOdz (3.1)

where l_(p, ¢, z) is a subdomain vector-valued weight function to be specified and

Vi is the ith volume element resulting from a discretization of the cavity. Given
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Figure 3.1: Illustration of the cavity geometry situated on a metallic cylinder along

with the coordinate system used in this work.
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the impressedsources(_.._i). the right-hand side of (3.1) is the interior excitation

function definedby

f_' = - V x J + akoZoa(p.o,:)

Upon application of the first vector Green's theorem [31], we recognize (3.1) as

the weak form of the wave equation

f V x E(p,0, z). V × g;(p, 0, z); #,(p, O, z) p do do dz

-k2° Iv, e_(p, O,z)E(p, &,z) " |4'-"i(p, O,z)pdpdOdz

-jkoZo f s fi(p, 4o, z) x H(p, cb, z). l_';(p,O,z)dS= (fin, (3.3)

where fi(p, qS, z) indicates the outward pointing normal of the element surface asso-

ciated with the ith unknown, 5'_ is the surface area of that element, and /t(p, qS, z) is

the total magnetic field. It can be shown that the surface integral of (3.3) vanishes

for all elements which do not border the cavity aperture. Furthermore, their non-

zero contribution is limited to the portion of their surface which coincides with the

aperture.

Unfortunately, (3.3) contains unknown electric and magnetic fields on the surface

of the cylinder. To eliminate/t from (3.3), we utilize the surface equivalence theorem

introduced in Chapter II (2.28) with a second kind dyadic Green's function. This

formula provides a relationship between the electric field and the magnetic field on

the aperture of the cavity. We expand the total magnetic fields as

/_(_) = /q'(_ +/_(_ +/?_(_

= /_'(_ +/_(_ (3.4)

where _i is the incident field, H_ is the reflected field due to the infinite metallic

cylinder and /t* is the scattered field attributed to the cavity. The incident and
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reflectedfields will be specifiedlater in this chapter while the scattered field is rep-

resentedby (2.28).

Simplifying (3.3) with (2.28) and (3.4), the resulting system is given t)v

E,/v, {Vx 14)(p,O,z). T × H'_(p,O,z)j _T(p,¢,=)

-k2oeT(p,¢,z)VVj(p,¢,z) " Wi(p,O,z)}pdpdchdz

+(koa)2Z Ej_o(j)_o(i) [_,(a, ¢, =). _(_,,,:
j t j

- , ]_(a,_,_) × _(a,¢,/) _' '• _j(a,¢ ,z') de' dz'dCdz = f.,[,,t + f,_,t (3.5)

where the unknown electric filed is expanded in terms of subdomain basis functions

= y_EjWj(p,¢,z) (3.6)
J

In (3.6), the subscript indicates the jth unknown and Wj(p,¢,z) is the same edge-

based expansion function as that used for testing in (3.1); e.g. Galerkin's procedure.

The cylinder has radius a and the relative constitutive parameters of the material

filled cavity are denoted by e_ and #_. The function 5,_(i)Sa(j) is a product of two

Kronecker functions and it simply indicates that the boundary integral only con-

tributes when both the test and source unknowns are on the aperture. In addition

to the interior excitation functional, f_", an exterior excitation functional, f[,t, is

present and will be discussed later in this chapter. The appropriate weight functions

and the evaluation of the FE matrix entries which are represented by Aij in the

FE-BI matrix system

will be presented next.

[_]
+

[o]

[o]

[o]
(3.7)
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3.2 Vector Weight Functions

An important factor in choosing the finite elements for gridding the cavity is the

element's suitability for satisfying the mathematical requirements of the formulation

as well as the physical features of the antenna system. _I_'aditional node-based finite

elements associate the degrees of freedom with the nodal fields but have proven

unsatisfactory for three-dimensional electromagnetics applications since they do not

correctly represent the null space of the curl operator and hence spurious modes

are generated [32]-[34]. In contrast, edge-based elements correctly model the curl

operator and therefore the electromagnetic fields. In addition, edge-based elements

avoid explicit specification of the fields at corners where edge conditions may require

a singularity. Jin and Volakis [20] presented edge-based brick elements which are

convenient for rectangular-type structures and cavities, but for cavities residing in a

circular cylinder, shell elements are the natural choice.

Cylindrical shell elements possess both geometrical fidelity and simplicity for

cylindrical-rectangular cavities. Figure 3.2 illustrates a typical shell element which

has eight nodes connected by twelve edges: four edges aligned along each of the

three orthogonal directions of the cylindrical coordinate system.

associated with twelve vector shape functions given by

ffzi:(p,¢,z)= 2o(p, ¢,z;., Cr,zt,+),

ffz56(p,¢,z)= _P,(p,¢,z;.,¢_, z_,-),

Each element is

2,_(p, ¢, z)= g;(p, ¢, z; .,,,, z,, - )

ff4,(p,¢, 2) = gzo(p,¢, z;., ¢,, z_,+)

g4_(p,¢,z)= 2_(p, ¢, z;p_,.,z, +),

_5,(p, ¢, z)= W¢(p,¢, z;p_,.,z_,-),

gz:_(p,¢, z)= _(p,¢, z;po,., z,,-)

gz_(p,¢, z)= _P,(p,¢,z; po,.,z_,+)

2,_(p,¢,z) = g4(p, ,, z;p_,¢_,., +), 2:dp,¢,z)= gz=(p,_,z;p=,¢r, ., -)



"2-5

z t

Zb

///

1/i / _T
f

®

__¢_= -_®

D,-

Y

Figure 3.2: Cylindrical shell element.
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ff'_s(p.o,=) = I['=(p.O.Z:pb. Ot...--). li"3;(p.o,-')= li":(p.O..:'/,_,.O_.-.+) i3.Sl

where |4'tk is associated with th,, edge which is delimited by local nodes (l.k) as

shown in Figure 3.2. As seen from (3.8), three fundamental vector weight functions

are required for the complete representation of the shell element. They are

Cv,,(p,,, _.;/5,,:;,.:,_)

ff,;(p,¢, z;/5,5,.:, _)

_.(p, e,,z;/5,_;,_,._)

_pb(o- g)(.: - ._)A
- ah p P

= _(p-/5)(= - _)0

- to(p-/5)(0- 0)_ (3.9)

where the element parameters (p_, Pb, @, dpr, Zb, zt) are shown in Figure 3.2, t = Pb--Pa,

a = q_ --@ and h = zt- zb. Each local edge is distinguished by/5, _,, 5 and ._ as given

in (3.8). The Lterm which appears in the definition of the/5-directed weight (3.9)
P

is essential in satisfying the divergence free requirement, i.e. so that V. I_j = 01.

Note that as the radius of the cylinder becomes large, the curvature of these elements

decreases, resulting in weight functions which are functionally similar to the bricks

presented by Jin and Volakis [20]. Having specified the vector basis functions, we

may proceed to develop the matrix entries for the system (3.7).

3.3 Finite Element Matrix

The inherent locality of a partial differential equation formulation results in a

highly sparse system, [.,4]. This FE matrix arises from the discretization of the first

two integrals of (3.5) and owing to the finite support of the basis functions its entries

are identically zero unless both the test and source edges are within an element.

Wj (p, _b, z) will only satisfy this requirement within the volume of the element. These weighting

functions introduce artificial charges on the faces of the element and are not divergenceless at

element interfaces. This is allowable since these elements do not guarantee normal field continuity
across the element faces.
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These matrix entries can be represented as

AO _ l l(1)'J 1.2 .{21,_ (3.10)-- *st -- _o ('r lst

P.

where we have assumed constant material properties within an element (cr and Hr)

and the subscripts (i,j) refer to the row and column of the FE matrix, respectively.

The two auxiliary functions are defined by

V x l_'t(p, dp, z;_i,¢pi,7.i,_i)pdpdepdz

l(2)ij fv, l_s(P'qS'z;PJ'dPJ"ZJ _j)" Vl/'t(P'(P'z;Pi'¢i'z'i'gi)pdpdOdz (3.11)st _

where (s,t) E {p,¢,z} indicate the direction of the source and test edges, respectively.

Since the fundamental weight vectors (3.9) are aligned along orthogonal directions,

l(1)ij l(1)ij]

(3.11) is symmetric with respect to the source and test edges (e.g. -st = -ts ,,

and thus, only six unique combinations of (s,t) for 1 (1) need be determined and only

three such combinations are required for I 0). They are

I_ ) -

I_lz) =

I11¢) -

ssg, [p_hln(Pb) L[I - +

- ,)
W _ + #' i _ f_(z- ss)(z- S,)dz

( th )2 -3

t2 - #s)(P- #t)dp

_._,h (o_- oi) - t (_s+ _,)+ _._,In _ +(to,)2 a



2_

.7

L- (oh)2 , (o - ,:;,)(0- ,;,)do _ (: - L)(= - :,)d=

i(2) _ ._,st_ 1 1 . _

_Sth 1 1

x

(3.12)

where each of the unevaluated integrals are of the form

fL U
l(U3,_,)+ - L_)+,_2,(v-L)

(3.13)

The FE matrix is assembled by evaluating (3.10) for each element combination which

contains both the i th and jth unknowns. Since the integrals (3.11) are symmetric,

only the upper triangle or lower triangle of the FE matrix need be computed and

stored.

A lumped impedance post may be included in the formulation by adding a term

to (3.5) and equivalently to (3.10); surface or sub-surface metallization layers may

also be modeled. Lumped loads are approximated in the FE-BI formulation by a

filamentary load [35] located at (_)L, ZL) for radial, (PL, ZL) for azimuthal and (PL, _)L)

for axial posts, respectively . These posts have length l, cross-sectional area s and

impedance ZL. Such posts may be represented as

t _(¢ - ¢L)_(z- zL)
Zp(p,¢,z) = ZL 0

zp(p,¢,z) - ZL_(p--pL)_(z--z_)
h 6(p - PL)6(¢ -- eL)

Z_(p, O,_) = zL p

for radial posts

for azimuthal posts

for axial posts (3.14)
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assuming that each post spans only one element. The contribution to [,4 i is given by

'a = J ]coZo _, Z_, (p, o, z )Vi.;.(p, o, z ) |'t"3(p, o, z )pdpdodz (3.15 )

which may be evaluated in closed form for the three post directions given in (3.14)

as

A_j = jkoZo--_i_jZL (a--5-_h2 _ -1 [(eL--¢,) (OL--¢j) (ZL- _i)(ZL- zj)]

• o
A_ = .jkoZo_,_j ,,t_h_j [(PL--_)(PL--_,)(:L--_,)(:_--_,)]

A,_ = jkoeow-gi_jZ,L _ [(PL--D')(PL--Pj)(OL--¢i)(¢L--¢j)] (3.16)

where the superscript indicates the orientation of the post.

In addition, infinitesimally thin metallization layers may be represented by simply

fixing a priori the weight coefficients to zero for weights associated with edges which

are tangential to the metal. This is a consequence of using a total electric field

formulation. The symmetry and sparsity of the FE system [,4] is maintained after

the addition of these loads while the BI system [G] remains fully populated and

symmetric.

3.4 Boundary Integral Matrix

The boundary integral provides an exact boundary condition for mesh closure

and its construction relies on a cylindrical dyadic Green's function. The entries of

the boundary integral sub-matrix are

Gij (koa )2 js, jfs3 Wt( a, dp,z; Pi, dPi,_"i, _i ) •

: ]_(a,¢,z) x a_(a,6,_) x h(a,¢',z')

•W_ (a, ¢', z'; Pj, dPj, 5j, _j ) de' dz'd¢ dz (3.17)
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where the weigh! functions are given by (3.9) and are evaluated al the surfac(' t' = ".

In (3.17), the dyadic Green's funclion (C,,2) satisfies both the radiation con(tit ion aim

the Neumann boundary" condition at p = a. This dyadic Green's function may be

expressed exactly as in [31]

C_¢(a,_;,e) -

OC_

azz(a,&_) - - (2_): Z
n_--OG

1

a*:(a,_, e) = - (2_)---_

1 _ /__ l[U'n'2'('y)
koako] H>')(,y)

(3.1s)

where "y = kpa and k o = _o - k_. However, for large radius cylinders e.g. ha >_ 3,

(3.18) is computationally prohibitive. In these cases, which are the main concern of

this work, it is advantageous to employ an asymptotic expression for Gz [36]-[39].

Such expressions employ a creeping wave series expansion of which only the two

direct path contributions, as shown in Figure 3.3, will be retained. The formula due

to Pathak and Wang [36] has proven quite accurate and is given by

jk°qe-Jko_ { (cos20 + q(1- q)(2 -- 3cos20)) v(/3) }

ae_(a'¢'_') ~ Jk--Z°qe-Jk°* sinOc°sO{2rr (1-3q(1-q))v(/3)}

-Jk---Zqe-Jk°_{27r (sin2o + q(1 -q)(2- 3,in=O)) v(O)G_¢ (a,

+q [_0 (_(_) - vO))] } (3.19)

2

[ _°'20 ] s -2- In the definition of/3, s is the usual geodesic path_'g_o=J and q = ko_"where/3 = ks

length (s = ¢(a_) 2 + z 2) and 0is the direction of the trajectory (0 = tan -1 [@]).

Depending on which of the two direct paths as shown in Figure 3.3 is used, (P =

(short path) or _ = 2rr - ¢ (long path). The soft and hard Fock functions, u(/3)
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Figure 3.3: Geodesic paths on a circular cylinder.
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and v(3) respectively, are characteristic of on-surface creeping wave interaction._ and

[lave been extensively investigated by Logan [40].

Care must be taken in evaluating (3.17) so that tile overall storage requirement

remains O(N) and the singular integrals of (3.17) are accurately computed. If uniform

zoning is used, the resulting sub-matrix ([G]) is block Toeplitz and hence amenable to

solution using the BiCG-FFT method. For the non-selfcell contributions, mid-point

integration may be used while a regularization procedure must be employed for the

self-cell along with a more accurate numerical integration scheme such as four point

gaussian quadrature. Bird [39] noted that (3.19) recovers the metallic screen Green's

function when 13 = 0 within the available approximation order. This suggests that.

(3.17) may be regularized by adding and subtracting metallic screen Green's function

; R = I_- F' I (3.20)

from (3.19). The free-space dyadic Green's function is given in closed form by (2.21).

The resulting regularized Green's function (curvature contribution only) is given by

G_(a,_,_.) ,-, _°qe ,ko_{ (cos20 +q(1-q)(2-3cos20))[v(13)-1]}

d,¢(a,$,_. ) .., jko {- 2--_qe -jk°" (sin20 + q(1 - q)(2 - 3sin20)) [v(13) - 1]

+q [sec20(u(13) - v(13))] }

(3.21)

and since it is not singular it may be numerically calculated. When the regularized

integrand is used, the contribution of the planar Green's function
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[b( = , ')]a.o.:) × c-'ot,_.S.._)× _(a.o .:

• t-('.!., o', :'; ,b,. o_...-:.7.._j)do' d.z'dod: (3.22)

is added to (3.21)

Gij = Gij + G P (3.23)

and this is used instead of (3.17) with R = s. Upon use of a common vector identity

and the divergence theorem [16], we obtain from (3.22)

(k°a)2 Is,

•_,(a,C',z';7,j,_,,_j,_j)d¢' dz'dCdz

a2Js L2rr V. [,5(a,¢, z)x IY¢,(a,¢,z;_i,¢,,:..i,_i)]

V. [/_(a, ¢', z') x I'_',(a,¢',z" _j,_bj, bj,_j)], _e-Jkn dO' dz'd¢ dz

(3.24)

where _ = :_3: + _ + _,. and this form of the boundary integral may be readily

evaluated even as R vanishes by employing the standard regularization procedure

(see for example [16] or [41]). This procedure amounts to subdividing the surface

into smaller patches and using an analytical evaluation of an additional regularized

integrand. We note that v(/3) _ 1 as a ---, oo and hence the regularized integrand

(3.21) vanishes leaving only the planar contribution (3.24).

3.5 Excitation: FE-BI

Two sources of electromagnetic fields are considered: external sources (plane

waves) for scattering analysis and internal sources (probe-feed) for antenna parameter

calculations. The use of the exact boundary condition in (3.5) allows the coupling
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of an exterior excitation field into tile cavity while the FE formulation itself rvadilv

permits modeling of interior sources. In this section we describe _he form of _he

source functionals f_l and f_,,t along with their numerical implemenlation.

The forcing function, due to exterior sources (f_t) is given by

"--IS J l p I _C l t t r
zoko_ ff,(a, ¢, z ). i'(_, O, : ) × H _ (_, co,: )do' d: (3.2._)

tf__t = 3 la_i ,

where/.t_i is the permittivity of the interior element associated with the i th aperture

unknown, l_'_(p, ¢, z) is the corresponding testing weight and /_yt represents the

magnetic field on the cylinder's surface in the absence of the cavity'. A plane wave

- ge_ako(k -_

= [fi(sinTsin¢i+cosTcosOicosSi ) +¢(sinTcos¢i--cosTcosOisinS O-
In

_, cos "y sin oil e jk°[asinO' cos¢,+zcosO,]
J

_i = yo[_(sinTcosOicos_bi_cosTsin_i)__(sinTcosOisin_,+cosTcos_i)_

sin -y sin oil d k°[a _i_°' _o_,+. _o.0,] (3.26)

is assumed to be incident on the cylinder from the direction (0;,¢i) where 7 is the

polarization angle and _i -- /}icos 7 + C/sin"7 is the electric field polarization. In

these, the difference between the observation and incidence angles is denoted by

¢/ = ¢ - ¢i. The total surface field is given by the sum of the incident and the

corresponding scattered field from the infinite metallic cylinder [42]. Specifically,

"*8

/l_Y_(a, O, z) = Hi(a,¢,z)+ H;y,(a,¢,z)

= _)H;V'+ _:H: y' (3.27)

From traditional modal analysis, we have

eJkocosOiz oo [ COS ")' +

H2Vt (a, ¢, z ) = - 21/o _--_oa s--_n-Oin=__oo [ H(_2)(koa sin Oi)
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n sinacosO, ] cj,,(_+___, )
J koa sin O, ,(2)

H,_ (koasinOi) J

H:Ut(a O,z) = j2}'sin3ejk°c°s°': __ [ e_'_(-}+¢-¢') 1
' °_koo .:-_, t H_(-_k-_aEO,)J (:3.2S)

These expressions may be approximated by retaining only a few terms of tile series

if koa sin Oi is small. However, as this parameter becomes large (e.g. for large a and

0i --* 90°), (3.28) may be replaced with equivalent asymptotic representations similar

to those considered earlier. Utilizing Watson's transformation and Fock theory [42]

in connection with (3.28), we find the following direct path creeping wave terms

2

~ -Yosin sinO,ejkoco'°'zE e_,koo.i.o,  
p=l

2 .

H_ ut "" j2Yo cosT koasinOi
p=l

-Yo sin "7cos Oie jk°c°"°'z y_(-1)Pe -jk°"'i_°_cp g(°)(rn_Pp)
p=l

]-• m gO)(m¢, ) (3.29)
"3 koa-_m Oi

1

in which ¢1 = 3_2- (¢- ¢i), ¢2 = (¢ - ¢i) - _, m = [_]_, and the asterisk

indicates complex conjugation. The appropriate Fock functions are [40] 2

jt e_t

¢')(_) - v_ _ w---_'_t

jl ejit

f(t)(_) _ v 'ff fr w-_) dt (3.30)

where wl(t) denotes the Airy function of the first kind, w'_(t) is its derivative with

respect to the argument and the integration contour (F) is given by Logan [40].

The asymptotic formulas (3.29) are quite accurate except when ¢ _ ¢i. In this

region, Goriainov's [43] expressions

H_ ut "" -Yo sin a sin OieJk°c°s°iZ { e -jk°asinOi'I'l [g(°)(m¢x)]*

2Logan [40] uses the e -j_t time dependency in the definition of these functions requiring the

complex conjugation in (3.29)
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with [40]

_{_cjkoasinO, cos(C-o,)[a(-?/,_ COS (0 -- 0,))]" }

77l 2 cos O, z /
H;Ut "" J2Y°c°s°koasinO, dk° l, f-jk°asinO'd_l [f(°)(m_b')]

+d ko°_;°°,¢°_(°-_')[f(-_ cos(o- o,))]" }

.+ }'o Sin ot cos OieJkoc°sO, z { e-jkoasinO' O' [g(°)( rrt_l )

rt2

J koa sin Oi 9(1)(mdpl )]"

__jkoo_.0,co_(,_-¢,)[a(-_ cos(, - ¢,))

l}7T/

Jkoa sin 0i G(1)(-m cos (¢ - ¢i))

F(Z)(_) = f(O(_)eJ_

(3.31)

(3.32)

have been found to be more accurate and can be used instead of (3.29). These

surface field expressions may now be used to calculate the entries of the column

vector {f[xt} via a numerical evaluation of (3.25). In particular, the modal series

(3.28) is used when koasinOi < 10 and either (3.29) or (3.31) when koasinO_ > 10 as

appropriate. Having now specified the external source, we present the more compact

internal source used for this work.

Conformal antenna patches are typically fed by a microstrip line printed along

with the radiator on the surface of the substrate. The microstrip lines are in turn fed

by a coaxial probe which originates behind the cavity as shown in Figure 3.4. The

patch may also be fed directly by the coax feed or through some form of aperture

coupling. Nevertheless, the principal excitation for the system is given by (3.2). The
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Patch or microstrip line

/
/""'-° " I " • _ _ Cavity

Metallic
cylinder

Figure 3.4: Probe-fed conformal patch antenna.
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impressed excitation current for an infinitesimally thin probe is given as

f,.,(p,o.z ) = i, lo<_(o- oj)6[z- =j)
p

J-""'(p,O,z) = ¢)Io6(p- pl)6(:- z])

J-'i'_'(p,¢,z) = ?.Io 5(p- pi)5(O- o])
P

for radial probe

for azimut hal probe

for axial probe (3.33)

which results in an excitation function (3.2)

f_'_' = -jkoZoIo_ [(pf - tSi)(zf - z:i)]

f:'_' = -jkoZolo_ [(pf- tS,)(¢]- 0,)1

for radial probe

for azimuthal probe

for axial probe (3.34)

With both types of excitation and the FE-BI matrix now specified, the BiCG method

may be used to determine the unknown electric fields within the cavity.

3.6 System Solution

The FE-BI system (3.7) may be solved using one of the popular direct meth-

ods such as Gauss-Jordan elimination, Gaussian elimination and LU decomposition

[44]. Alternatively an iterative method such as the Gauss-Seidel method [44], the

conjugate gradient method (CG) [44] or the biconjugate gradient (BiCG) method

[44]-[46] may be used. The symmetric form of the BiCG solver has been chosen since

it requires much less memory than a direct method and it can be implemented in a

manner which is computationally efficient; i.e. utilizing only one matrix-vector prod-

uct per iteration. Although use of an iterative method such as the BiCG method

can require more wall clock time than a direct solver when multiple right-hand sides

are considered, in-core memory is deemed the most critical and expensive resource.

The BiCG algorithm is given in Appendix B and the efficient FFT-based calculation
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of the boundary integral matrix-vector product is discussedin Appendix C. IN _his

section,wewill presentonly details of this iterative solverspecificto this applicalion.

The BiCG algorithm requiresone matrix-vector product per iteration (seethe

algorithm in Appendix B). This operation representsthe bulk of the computational

demandof the method and requiresO(N 2) complex operations per iteration for fully

populated matrices. The matrix-vector product is carried out by executing the sum

N

y[n] = [A]{x}= _ a[n,n']x[n'] n=1,2,3 .... ,X (3.35)
n_=l

and if the matrix is sparse, a storage scheme such as the Compressed Sparse Row

(CSR) format may be used to reduce both the memory demand and computational

load. The FE matrix [.A] in (3.7) is such a sparse matrix. The CSR scheme retains

only the non-zero entries of the matrix in one long data vector along with another

data vector, known as the offset vector, which contains the number of non-zero entries

per row of the matrix. Using the CSR scheme, (3.35) can be rewritten as

y[n] = [A]{x)= _ A[e(n,n')]x[n'] n=l,2,3,...,N (3.36)
nt'_l

where r[n] is the number of non-zero entries per row of the matrix and e(n,n')

indicates which entry of the long data vector is associated with the matrix entry

A[n, n']. Typically, the rows of the matrix are stored consecutively which results in a

counter being used for the mapping function e(n, n'). Although additional memory

saving is possible since the FE matrix is symmetric (thus only the upper triangle of

the matrix need be stored), experience has shown that use of a symmetric matrix-

vector product leads to a severe performance degradation on vector computers (such

as a CRAY) due to the resulting short vector lengths. Therefore, the entire sparse

FEM matrix is stored and used in the product so that the code's performance is

maximized when executed on vector architectures.
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The boundary integral matrix-vector product involves tile fully populated illalrix.

[G]. If uniform surface elements are used in the discretization, thi._ matrix-veclor

product may be expressed as a truncated discrete linear convolution and is thus

amenable to efficient calculation using the fast Fourier transform (FFT). Although

uniform zoning imposes restrictions on the geometries which can be analyzed by this

FE-BI technique, the resulting memory and computational efficiencies have proven

to be well worth this sacrifice.

The boundary integral product is implemented as described in Appendix C with

the following problem specific exception.

property: G,_ [m - rn', n - n'] = G,_ [m' -

The cross-term arrays do not possess the

rn, n' - n] and hence the periodic replica-

tion rule used by Jin and Volakis [47] cannot be used here. Replication refers to the

padding process necessary in the computation of a linear convolution via a circular

convolution. A different replication rule was developed using traditional techniques

to perform the discrete convolution which is described in Appendix C. A general dis-

cussion of replication is provided in that appendix. Cylindrical-rectangular cavities

are bounded by metal on all four lateral sides while wraparound cavities encircle the

cylinder as one unbroken groove. These two types of cavities are shown in Figure

/5.7. The cross-term replication rule must be changed for wraparound arrays since

the cavity discretization is fundamentally different than is the case for cylindrical-

rectangular cavities. We note that these replication rules are not unique and are

implementation dependent. In particular, since the columns of the discretization

wraparound on a circular cylinder forming closed loops, the replication rule must

account for this periodicity to reduce the computational burden.
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3.7 Scattering and Radiation

Once the cavity aperture and volume electric fields have been determined for

either an external excitation (scattering) or an internal excitation (radiation), sev-

eral engineering quantities may be calculated. The aperture fields may be used to

determine the radar cross section (RCS) for scattering or the radiated fields for an-

tennas. This entails the integration of the aperture fields with an appropriate Green's

function. In addition, the input impedance may be calculated by using the interior

cavity fields. In this section we will present the relevant formulae for calculating the

far-zone radiated/scattered fields and the input impedance from the electric fields.

3.7.1 Far-field Evaluation

Two of the most important applications of the presented formulation deal with

the calculation of the cavity's RCS and the radiation pattern due to sources placed

within or on the aperture of the cavity.

We begin with the integral representation of the scattered magnetic field in terms

of the aperture fields. We have,

/t'(_, e, ¢) = jYokoa G2(r, O, ¢; a, ¢ ,z ).

[_3(a, ¢', z') x F,(a, ¢', z')] de' dz' (3.37)

with (r,0,¢) indicating the observation point in spherical coordinates. When the

observation point is very far from the cylinder, the dyadic Green's function in (3.37)

can be replaced by its far-zone representation

= ' ' e-Jk°" [Ge¢Oq_' + Ge*OP-,+ G¢'eQb¢ '] (3.38)ko--V-

where the unprimed unit vectors are functions of the observation position and primed

ones are functions of the integration point in (3.37). The components of this far-zone
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Green's function are determined by a mode matching procedurc giving

Goo

G Oz

j 2kocosO , _' n d,_C_+Co_o'))
" (2:r)2(koasinO) 2(ak°c°s°: n=-o__ tI',_(2)(koasinO)

,.., ___ cJ'qT+(e-_ ))J 2d_°c°s°z _ ,,'I2t,.
(27r)2 a n=-o_ ttn t_Coasin 0)

G, ¢ ,._ j 2 , _ 1 d,_(_+(¢_¢')) (3.39)
(2.): asino eJk°c°_°z ,,=-o__ H_2)(koasinO)

As one might expect, these series converge rather slowly for large koa sin 0. They

must therefore be recast in another form by employing Watson's transformation and

Fock theory as described before. We have,

GO¢
]% COS 0

47r
2 [ koSno  l' ].--e jk°c°sOz Z(--1)Pe -jk°asinO'l'" 9(°)(mCp)-j -- (mOp)

p=l

2

Go _ ,_ kosinO Cko cos0z' Z c-Jk°asinOOp [g(O)(rr_(I)P)]*
4zr

p=l

jko_o_O, __, e-Jko_,,i_o%, f(O)(rnO p (3.40)2aTr sin Oe
p=l

• e_, (_),where the appropriate Fock functions are given by (3.30) As expected, when ¢'

the formulas attributed to Goriainov [43]

GO ¢ koCOS0 .e3kocos0 z, { e_jkoasinOox [
,., 9(°)(m_1),, -

47r

e jk°asinOc°s(¢-¢ ) G(°)(-_yzcos((_- ¢')) - J
koa sin 0I.

G°z "_ k°sinOejk°c°s°z'{ e-jk°asinO't'14zr [g(°)(m¢l)]*+

Tn 2 . t I2art sin 0 esk°c°s°z

m ].J koasin og(l)(m¢l) -

[a(0)(-_cos(,- ,'))]"}ej koa sin Ocos ( ¢-¢' )

[/(0)(m¢1)]"+

_j_oo.,.0oo_(_-_')[F(O)(_mcos(__ ¢))]-} (3.41)

are more useful. The far-zone scattered or radiated field can be computed numerically

by using either (3.39),(3.40), or (3.41)in (3.37)•
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For the scatteringproblem, the RCSis most often the quantity of interest which is

given by (2.29). Alternatively, the antennagain may becomputedfrom the far-zone

fields as

r AL1
Gds(0,¢) = 101og,0147r(_--_-)21f*(0,¢)l_] + lOlog,oLZoR,, ]

where Acre is the wavelength in centimeters, Rin is the input resistance which is given

in the next section and _T is the radiated electric field as r _ oc. In the far-zone,

the electric field is related to the magnetic field by

3.7.2 Input Impedance

E¢ = -ZoHo

Eo = ZoH_ (3.43)

In addition to the antenna pattern and gain, designers are concerned with the

input impedance of an antenna for feedline matching purposes. The FE approach

allows the calculation of the input impedance of the radiating structure in a rather

elegant manner. The input impedance is comprised of two contributions [48]

Zin : Zp --_ Z D (3.44)

where the first term is the probe's self-impedance which is the impedance of the

probe in the absence of the patch and the second term is the contribution of the

patch current to the total input impedance. The self-impedance of a radial probe is

typically approximated as [49]

Zp = 60 (kol) 2 _ + jkolsin-' _ + 21 (3.45)

where e_ is the relative permittivity of the substrate, r_ is the radius of the probe

and l is the length of the probe. For very thin substrates and thin probe wires, this
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contribution is negligible. Ignoring the probe-feed'sself impedance,we have[15]

, f_ i',,_t, )pdpdodz (3.-16 )1 t[(p.o.z).J, tp.o.z
z,_ - lc_ ;

where the impressed current is given by (3.33), I,; refers to the volume elemems

containing the probe-feed, the electric field is the interior field associated with the

feed edge and Io is the constant current impressed on the probe. Utilizing (3.9) and

(3.33) into (3.46) yields

_

z_n

m
E(i)_ a

Io _E [(P_- P') (:_ - _')]

E(i)g h [(ps_fii)(¢ __i)]
Io ' ta

for radial probes

for azimuthal probes

for axial probes (3.47)

which must be summed over the four parallel edges of the element which contains

the feed. In (3.47), the probe location is indicated by (¢,,zs), (p,,z,) or (p,,¢,) for

radial, azimuthal or axial probes, respectively.



CHAPTER IV

Finite Element-Absorbing Boundary Condition

Method

In a previous chapter, the Finite Element-Boundary Integral (FE-BI) Method

suitable for cavity-backed antenna analysis was introduced for cavities which are

recessed in an infinite, metallic cylinder. The interior fields of the cavity are deter-

mined via the FE method while the aperture fields are determined using a boundary

integral in conjunction with the FE method. The boundary integral provided an

exact mesh closure condition; however, use of such a global condition partially de-

stroys the sparsity of the FE-BI system. In fact, as the surface area of the aperture

increases, the poor scaling property of the boundary integral dominates the compu-

tational and memory demand of this methodology. In addition, the FE-BI method is

ill-suited for use with coated conformal antennas or protruding antennas. Therefore,

it is advantageous to seek an alternative mesh closure condition which preserves the

inherent sparsity of the FE system.

One approximate closure condition utilizes an absorbing boundary condition

(ABC). This condition provides an approximate relationship between the tangential

electric and magnetic fields on the boundary of the computational domain. Wilcox

[50] introduced a spherical wave expansion of these fields which is the typical ap-

45
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proach taken for deriving ABCs. A major disadvantageof two popular .-\l_('., ft_r

the vector waveequation, which wereproposedby Pelerson[22]and \Vebband l(atl-

nelopolous [23], is the requirement that the meshboundary be spherical. For mosl

geometries, including cylindrical-rectangular cavities, the use of a spherical mesh

closureresults in an excessivenumberof unknowns. Consequently,conformal ABCs

which minimize the number of unknownsexpendedin the regionbetweenthe geom-

etry and the outer boundary havebeenactively sought. Oneconformal ABC which

hasprovenremarkably accuratefor scattering applications wasrecently proposedby

Chatterjee and Volakis [24]. This ABC usesa second-orderexpansionof the local

fields on the boundary to relate the electric and magnetic fields and it explicitly

includes the curvature of the boundary in its formulation.

In this chapter, the FE method will be married with thesenew ABCs to form a

FE-ABC method suitable for cavity-backedantennaswhich are recessedin a circular

cylinder. The completeformulation requiresdevelopmentof the FE equationsalong

with the specification of the ABC for a cylindrical-rectangular box boundary. An

important aspectof this developmentis the use of a domain decompositionwhich

employs a scattered field formulation in the exterior region while utilizing a total

field formulation within the cavity. Such an approach minimizes the number of

unknowns within the cavity while removing the incident and reflected fields from

the exterior region unknowns. The ABC presentedby Chatterjee and Volakis [24]

absorbsonly the scattered field in the exterior region (seeFigure 4.1) and due to

known error propagation effectsassociatedwith a total field formulation, a scattered

field formulation is preferred in the exterior region. For radiation analysis, such a

decomposition is unnecessarysince the radiated field is identical to the total field.

Previously, the FE-ABC method had only beenusedfor scattering analysisof finite
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bodies (seefor exampleChatterjee et al. [21]). A primary goal of this chapter is to

present the first application of this method to infinite bodies as well as the first use

of ABCs for antenna parameter calculations. We begin with the formulation of the

FE-ABC equations.

4.1 Formulation

Consider the computational domain shown in Figure 4.1. There are two volume

....................... ._tS"_

o - ° _ Patches Region I _ _ .

t Composite skinComposite skin •

\

stripline

Metal

Figure 4.1: Typical coated cavity-backed patch antenna with ABC mesh termination.

regions: an exterior region, V I, which includes any radome overlay and an interior

region, V H. Both regions may be inhomogeneous and are separated by the aperture

surface, S _, and the surface metallization surface, S "m both of which lie on the

surface of the metallic cylinder (p = a). Thus, the exterior region is defined by p > a

while the interior region has p < a. The computational domain is bounded by the

union of the metallic surface, S me_t = S "m + S _ where S _m is the metallic walls of

the cavity and the ABC surface, S _b_.

Within the computational volume, the total electric fields may be written as

= + e v
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= _H(,- 3 Fc I _ _.t.li

where ECrU(F) = £'(F) + £r(F) as before. The total magnetic fields are likewise

written

= _III(r--_ 7_" E _'1I (4.2)

where /_Y'(F) = /_i(r-') + /f_(F). The boundary conditions are readily written in

terms of the electric and magnetic fields. Within the cavity, the tangential electric

field vanishes on the metallic walls

fix EI1(r--') = 0 F(SS cm (4.3)

while on the aperture, the total tangential fields are continuous

(4.4)

On metallic surfaces, all tangential electric fields vanish, i.e.

h x/_CYl(_ = fix/_l(r-') = fi x/_H(F) = 0 FES _m (4.5)

while fi x Ec¢(F) also vanishes over the aperture

fix£_¢(_ = 0 FeS _p (4.6)

since it contains both the incident and reflected fields. Thus, the only non-zero

electric fields on the surface of the metallic cylinder correspond to the unknown

fields within each region which are continuous across the surface aperture as implied

by (4.4).
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The FE equations may be developedby considering the inhonlogeneousvector

waveequation (2.16). Employing the method of weightedresidualsand Green's tirst

vector identity, the weakform of the vector waveequation (a.a)is obtained where tile

interior source functional, flnt is once again given by (3.2). A domain decomposition

is accomplished by substituting the total field relationships (4.1) and (4.2) into (a.a)

producing the FE-ABC equation

- koerE " Wi dV +

iv [ _7 X _-1II'_7 X _/'i --2 _-_II
- _o e_ r_, .17_ dV +

II _r

:_o,ois,.°(_×n..,)<_ +j_o,o£:.b×(_'+_")1<'_-
jkoZo L (_ x Hs') . _/', dS = fi,,, (4.7)

?"

However, due to the boundary conditions at the surface of the cylinder, (4.4) and

(4.5), the two surface integrals over the aperture cancel one another and with some

further manipulation, (4.7) can be written as

fvis "_7 x El" _T x l/Pi -k2°erF--'I" I_ri]#r dV +

Iv iII "_T x _TjII "_ X#rl_i __ k_oe_,i " l_i] dV +

where we have used Amp_re-Maxwell's Law (2.4) to express the magnetic field on

the ABC surface in terms of the curl of the electric field. The second term on the

right-hand side of (4.8) serves the same role as the exterior source functional, f[_,
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given previously for the FE-BI formulation in (3.25): however, as will be shown, this

term will vanish when combined with the succeeding volume contribution. The last

term on the right-hand side is a source functional which is present due to lhe use

of a scattered field formulation in the exterior region, i 'I. As written in (-1.8). this

final term must be computed over the entire exterior region. However, by applying

Green's first vector identity, this final term may be written as

f): = :' v ×

fs[ fi . [lg'i x V X- fc_t ]tt_JdS (4.9)

The quantity within the brackets in the volume integral of (4.9) is recognized as the

vector wave equation and since /_cul already satisfies the free-space wave equation,

this contribution is non-zero only for material (e_ 7_ 1 and/or #_ -¢ 1) regions. The

surface integral is the boundary term which is non-zero only over the ABC surface,

the aperture surface and the interface between two materials in the exterior region

which have different permeabilities. Thus, (4.9) may be rewritten as

/y = f ¢¢,. v× - :o . ¢v, dV+
,JKld _r

where #_i is associated with the interior material layer and #_ is the corresponding

quantity for the exterior material layer. The third surface integral need only be

computed for each dissimilar material interface in the exterior region. Utilizing the

source-free vector wave equation and assuming that material properties are constant
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within anelement,(4.10)may beincludedinto (4.8) to gel the final FE-ABC equation

_ [_' X fl'_7 x 1_'; -]ci_(rF'l"li_']dI'-j-;1 _r

/VSS [ V X j_ll " _'7 XI_''/_r -- X°(rr--"2_ll • 14"i] dV +

/.. _ ,.(,(_×v×_').¢,ds=_Ao'+j.--;-

m,ev-jkoZo[)_,

×"'.-'). t_ es-

dS

(4.11)

The source contribution associated with the ABC surface has been canceled by the

addition of (4.10) and the remaining terms of the right-hand side of (4.11) are consis-

tent with scattered field formulations. The aperture contribution is analogous to the

exterior source functional used for the FE-BI formulation with the exception that

the permeability is now associated with the finite element on the exterior side of the

aperture. Implementation of (4.11) will give superior results to (4.8) due to numeri-

cal error propagation which is inevitable when the volume source term is evaluated

throughout the exterior region as in (4.8). In addition, since (4.8) need be computed

over the entire exterior region rather than over the presumably smaller material re-

gion, it would require substantially more computational effort than is required for

(4.11). This later set of FE-ABC equations may be written as a linear system of

equations

[A,._..]{':'){z"<"))= (4.12)

where the FE matrix [jlSe__bc ] may be written as a sum of the FE matrix used in

the FE-BI formulation (3.10) and a second term attributed to the ABC surface

[AS,_,b, ] = [A] + [A :b'] (4.13)
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The new FE-ABC equation (4.11) is comparable to (3.3) exce[)l 1hal 111¢' latl¢'r

utilizes a total field formulation throughout the computational donlain, lh)wev¢,v.

previously we utilized an integral expression for the total magnetic field across the

aperture which resulted in the FE-BI equation (3.5). Such an integral expression pro-

rides an exact relationship between the total tangential electric and magnetic fields

over the aperture surface which also formed the computational domain boundary.

Alternatively, we may employ an approximate relationship between these two fields

with the goal of retaining the sparsity of the resulting linear system. Additionally,

as shown in (4.11), this FE-ABC formulation may be used for coated as well as un-

coated geometries. In the next section, we will develop an approximate relationship

suitable for mesh closure.

4.2 Conformal ABCs

Traditional three-dimensional vector ABCs [22, 23] require a spherical outer

boundary which results in an excessive number of unknowns. New conformal ABCs

have recently been proposed by Chatterjee and Volakis [24] which have an outer

boundary that follows the contour of the enclosed geometry resulting in a minimal

number of unknowns. In this section, the specific expressions required by this new

ABC for a cylindrical-rectangular box boundary will be derived. A definition of ABC

order will be given and subsequently the first- and second-order ABC expressions will

be presented.

For the purposes of discussion, we define a secondary field as the field which

is a consequence of equivalent currents that are supported by some primary source

which is either external or internal to the computational domain. Thus for scattering

problems, the scattered field is the secondary field while the incident and reflected
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fields are considered primary' fields. Likewise. for a radiation problem, the radiated

field is the secondary field whereas the source field due to an impressed current is

the primary' field. In (4.11), we recognize that an ABC must supply' a relationship

between the tangential components of magnetic and electric secondary fields on the

absorbing boundary, S abe.

The secondary field may be expressed as a Wilcox expansion

e -jk°n P fT_,(tl,ta) (4.14)
f'I,,,ta,t,I - m E up

p----O

where u = _, Ri = pi q- 72 and pi is a principal radius of curvature. In this

form, the curvature of the non-spherical wavefront is explicitly used. The point of

observation is given in Dupin coordinates [31] as

x = nh + X"o(tl,t2) (4.15)

where h is the unit normal and Xo(tl,t2) denotes the surface of the reference phase

front and therefore, tl and t2 denote tangential coordinates on that surface. Absorb-

ing boundary conditions annihilate outward propagating waves up to a certain order.

A zeroth-order (P = 0) ABC represents the usual Sommerfeld radiation condition

(2.15). A first-order ABC (P = 1) annihilates all fields with up to a u -1 dependency

while all higher order fields are reflected back into the computational domain. For

a cylindrical surface, u = V/_, thus the zeroth-order ABC is simply the geometrical

optics spread factor while the first order ABC annihilates fields up to O(p -1). Ev-

idently, as the ABC order increases, the reflected fields have an increasingly higher

attenuation factor and hence the boundary may be placed closer to the geometry

without inducing erroneous reflections.

In the following two sections, we will present the first- and second-order confor-

mal ABCs attributed to Chatterjee and Volakis[24]. In particular, the appropriate
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expressions for a cylindrical-rectangular box boundary will be given. The mat rix _'n-

tries which enforce these ABCs will be presented assuming tile use of lhe edgc-bas,,d

weight functions (3.9).

4.2.1 First-order ABC

The first-order ABC is similar to the impedance boundary condition attributed to

Rytov [51]. Specification of the ABC requires the relationship between the tangential

components of the electric field and its curl. For the first-order ABC, we have

fi×VxE s = [j/Co-i-_zm-_']E[ (4.16)

where/_' = i,E:, + = , = + , 2i i2 and are the principal

curvatures of the surface. These curvatures are given by [31]

10hi

_i = -hi On (4.17)

where o denotes a normal derivative and hi are the appropriate metric coefficients.

The ABC formulae are going to differ for each surface of the cylindrical-rectangular

box. There is a singly curved surface which has fi = ¢; with p being constant and a

total of four flat surfaces having either fi = +¢ with ¢ being constant or fi = +_, with

z being constant. Since the curvature and tangential edge orientations are different

for these three cases, each surface will be examined separately.

For singly curved surfaces, the normal unit vector is radially directed and the

tangential edges which form the surface are ¢- and _,-directed. Accordingly, (4.16)

may be written as

[_ x V x Es = jko + E_,¢ + jko- E;_, (4.18)

_! and _2 = 0. The matrix entry for the ABC surface issince tl = ¢, i_ = _,, _1 = p
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given by

as extracted from (4.11). For the singly curved surface, dS = pdOd: and thus

(4.20)

where the subscripts denote the orientation of the test and source edges, respectively,

and the edge-based weights (3.9) are used for l/V; and I4_ in (4.19).

For the flat surfaces which have fi = -t-¢, the ABC (4.16) is given by

() x V x if,8 = jko [fE* o + _.E:] (4.21)

since the tangential edges are oriented in the f- and _-directions. The corresponding

matrix entries (4.19) are

A_: c = jkoaiaj(-_7=) _-1 [l(z 3_z_)__(z.i+z.,)(z__z_)+

(h) 1 _,fjt] (4.22)

For the fiat surfaces which have fi = :t:_, the ABC (4.16) is given by

_. x V x if_," = jko [fiE; + dpE ,] (4.23)

since the tangential edges are oriented in the f- and &directions. The corresponding

matrix entries (4.19) are

a [Pb] 1 ((_, + @j)(¢__ ¢_)+ (_i(bja]

a 1 1__

(4.24)
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These ABC matrix contributions may be assembledin the usual fashioll and

added to the FE matrix (3.10) previously used with tile FE-BI formulation. Since

the preceding ABC has only first-order accuracy, tile mesh closure must often be

placed far from the cavity aperture which results in a large number of unknowns. To

reduce the computational burden of the method, second-order conformal ABCs need

to be explored as presented in the next section.

4.2.2 Second-order ABC

The conformal second-order ABC is necessarily more complex than the first-order

ABC. The tangential component of the curl may' be approximated as

where Vt denotes the tangential surface gradient operator [31]. Unfortunately, use

of (4.28) would result in an asymmetric system [.,4_bc] due to the last term which

possesses only one differential operator. An asymmetric system requires an itera-

tive solver which utilizes two vector-matrix products such as the conjugate gradient

squared (CSG) solver presented in Appendix B which is based upon the work of

Vorst [52]. A symmetric system, as seen previously in Chapter III, requires only

one matrix-vector product if the BiCG solver is used. Additionally, for symmetric

systems, only the upper or lower triangle of the matrix need be computed and stored.

Chatterjee and Volakis [24] realized that the gradient in (4.25) may be approxi-

mated by

ET, (V . E:) = jkoK7, (ft. E*) -4- (.9 (n -5) (4.26)

With both a gradient and a divergence operator present, one operator can be trans-

ferred to the test vector while the other may remain with the source vector. Hence,
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the resulting matrix may be symmetric since both the test and source fields arc"

differentiated. With (4.26). (4.25) max' be written

For the basis vectors (3.9) considered in this thesis, _. E/' is always zero on S abC and

hence the third term of (4.27) will not contribute to this form of the ABC. For surfaces

with a common constant curvature for both tangential directions on a surface, this

new vector ABC (4.27) will lead to a symmetric F'E system [.,4_bc] as shown by

Chatterjee [25]. However, if the principal curvatures on a surface are unequal, the

system will be asymmetric. For either (4.25) or (4.27), the three coefficient dyads

are given by

= _ D-_--_-2_¢i
i=l

= D - _- 2_,
i=1

= _ (D-An-2a,) ko+3tcm
i=1

l_g 2t_i] [i_i} (4.28)
t_ m

where Jog = _¢1_2, /k1¢ = al - 1¢2 and D = jko + 5am - -_. In the case of (4.27),
_;rn

must be divided by jko due to (4.26).

As was the case for the first-order ABC, it is advantageous to consider the second-

order ABC for singly curved and flat surfaces separately. For a singly curved surface,

_! and _2 = 0the unit normal direction and curvature parameters are fi = _, _a = p

as before. After some manipulation, we find that (4.28) becomes

[t (3 - j2kop+l +D jko+ $$+j2kop-3

= 2p
/3 -- 2p _ + k_

j2kop + 1 j2kop - 3

+ jkoD] _

(4.29)
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where D = j]% - -- Note that _ is not symmetric unless p _ zx:
2p"

For the second-order ABC. it is advantageous to segment Ill(' malrix entry (-1.19)

into three parts. After some vector manipulation [25], lhese conlribulions are given

bv

[(1)abc ---- /S_b¢ _/_/, [_. |_'j] dS

where l (3)abc is only used for the original, asymmetric ABC (4.25).

(4.30)

On the curved

surface, we find

i{¢l¢)abc

I_) abe

I(2)abc
¢¢

i(2z)abc

i(2)abc
z¢

i(_)abc

I(z3)abc

4 + jkop_D + 2pbDj2koPb+ l sisj-_-" 0 [3 _1 _ ]+ zo,+

j2kopb + 1

2pb ]

j2kopb - 3
.I

= _ 2pb I sisj

"1

j2kopb + 1

= tj2k-_pb_

1 (q_i + q_j) (¢_- ¢_) + ¢iSj a] (4.31)

where the first subscript denotes the test edge direction while the second subscript

indicates the source edge direction. Note that the cross terms of the second contri-

bution has -ezr(2)_b_:/: -z¢l(2)_b_which results in an asymmetric FE system regardless of

which form of the ABC, (4.25) or (4.27), is used. This asymmetry is a direct conse-

quence of the different principal radii of curvature for a cylindrical surface. However,
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these terms are asymptotically identical as the radius of the ABC surface becomes

large since the surface will then be approximately" planar. A symmetric ABC may

be obtained by dividing both tile numerator and the denominator of (4.31) by the

ABC radius, pb which results in

(4.32)

To determine whether the symmetric evaluations given above may be used in place

of the asymmetric terms, the RCS was computed using all three forms of the ABC

for a 0.6Ao x 0.6Ao cavity recessed in a 0.2Ao metallic cylinder. The cavity if filled

with a material which has cT = 2. The ABC surface had a radius of 0.5Ao and the

lateral walls were place 0.3Ao away from the cavity sides. Thus, the ABC surface is

placed at least 0.3Ao away from the cavity aperture which is shown to be sufficient in

Chapter V. The computed RCS for all three ABCs were within 0.01 dB of each other

and 0.5 dB of the value computed by the FE-BI method. This comparison shows

that the symmetric form of the ABC may be used in place of the asymmetric ABC

in order to reduce the computational and storage demand of this FE-ABC method

even for a highly curved surface.

For the flat surfaces (fi = -t-¢ or fi = -t-_,), we find that the first contribution to

the ABC entry, I (a)"bc, is identical to the first-order case, (4.21) or (4.23), since

V = jko [tit, + t2t2] (4.33)

where tl = _,, i2 = t5 iffi = -t-¢or t_ = t3, t2 = q_iffi = -I-L However, for the

second-order ABC, there are additional contributions due to

=fl - jkol [tltx+tJ2]

= jkofl (4.34)
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If f_= +o. theseadditional contributions are given by

PP - jko_i_J _ - 1

i_)_bc = __,_j(_)ln(pP__)

l_ )_bc - "_,g3(_)ln(p_)

- jko _:

1 FSi/Sjt] (4.35)

However, if fi = +}, these additional contributions are given by

I_2p)_bc _

l(2)abc
pdp =

I(2p)abc =

I(¢2¢)abc __

I_a) _bc =

i(3)_bc
Cz _-

SiSj fib

-_ - 1

.._ [2pbln(_)--_j(_--l)

jgigj [2pb In (_) kot-,i (_ - 1)

-J(o)[jko -d 2(d-P_°) -2(_;+_j)t+_ln

1 _i_jt]_,_,(5)[_(_-o:)-_(_,÷_,)(_-_:)+ (4.36)

Although it appears that .p¢l(2)_bc-¢ ,¢pr(2)_bcfor fi = +_,, in fact these terms will be

identical when evaluated on the ABC surface since tSi = _Sj = p_.

We have now fully specified the admittance matrix for both first- and second-

order ABC mesh closure conditions. When coupled with the previously given FE

matrix, the resulting system retains O(N) sparsity regardless of the problem size

or composition. Furthermore, coated geometries may be readily modeled with this
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formulation since the FE method permits inhomogeneousmaterials. However. the

sourceterms given previously as the right-hand sideof (4.11)must still bespecified.

4.3 Excitation: FE-ABC

In the previous section, vector ABCs were presented along with the associated

matrix entries required to implement the FE-ABC formulation (4.11). We can now

generate the FE matrix, [.d]_-_bc], which is fully sparse. In order to find the scattered

or radiated field, we need to develop the excitation function (or right-hand side) of

(4.11). The first term, f_nt, is the interior current probe source given previously by

(3.2). The second term is analogous to the external source functional, f/_t used for

the FE-BI formulation(3.25); however, this term now contains the permeability of

the material exterior to the cavity aperture rather than that of the cavity fill. The

final term is a consequence of the scattered field formulation in the exterior region.

It vanishes for free-space since the incident and reflected fields satisfy the vector

wave equation (2.16). For coated geometries, this term will not vanish and must be

retained for that case as discussed later.

4.3.1 Aperture Term

Previously, the FE-BI formulation required the external excitation function given

by (3.25). In this, the magnetic field attributed to the incident and reflected fields

is evaluated on the mesh boundary. Since the mesh boundary coincided with the

cylinder surface, considerable simplification was possible in generating these magnetic

fields (see (3.28),(3.29) and (3.31)). However, for an FE-ABC formulation, the mesh

boundary does not correspond to the cylinder surface although as shown above, a

source term may be attributed to the aperture. Therefore, in the absence of any

radome covering, the exterior source term is similar to the one used for the FE-BI
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formulation (3.25).

The forcing function due to exterior sources is given by

jkoaZo _ .....F = ' ' z ) x ft o. ) dod: t-1.37)

where the integration surface, S,, is associated with the ith unknown which lies on

the cavity aperture and/_t is the sum of the incident and reflected fields. Note that

(4.37) contains the permeability of the exterior material (/a_) while the corresponding

function for the FE-BI formulation (3.25) contains the interior material (or cavity fill)

permeability (/_i). This is a consequence of applying Green's first vector identity to

either the exterior or interior volume regions, respectively. Thus, the same aperture

excitation term may be used for the FE-ABC and FE-BI formulations.

4.3.2 Material Term

As previously mentioned, if a material is present in the exterior region, an ad-

ditional volume and surface source terms need be included in (4.12). For example,

these terms are necessary for a printed antenna with a radome covering. Such terms

are a consequence of using a scattered field formulation in the exterior region. Typi-

cally, a radome is a complex, inhomogeneous layered structure which exhibit desired

transmission and reflection characteristics within a design bandwidth. Traditional

method of moments formulations can be used to model such complex layered over-

lays; however, such an approach requires an extremely complex and costly dyadic

Green's function or alternatively a full volume formulation, either of which is as-

sociated with a fully populated matrix. Since the exterior region in this FE-ABC

formulation is modeled using finite elements, radomes or any material covering may

have arbitrary composition without the necessity of a complex Green's function. In

fact, the same algorithm may be used for both coated and uncoated bodies by simply
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including the material source terms which are given next.

The volume contribution may be recognized as the third term on the righ_-hand

side of (4.11)

fi v -- -ko2 [1 ]l_',.ECCdVCrf;ld (4.38)

This contribution is associated with the volumetric electric field and using the cylin-

drical shell elements (3.9) presented previously, this term is given by

s,_, = -ko_ _ _ _ f_, , o (_- _;,)(_-_,/ES(_,_,=/e_d_d=

f_' = -k2° ¢_ -i-£ fb , . (p - _i) (z - 5,) E_ ¢ (p, ¢, z) pdpdCdz

(4.39)

where the subscripts indicate the orientation of the i th edge. It remains to determine

the electric field anywhere in the exterior region which will require traditional modal

analysis.

An incident plane wave (also presented in (3.26)) is given by

"_" ie_ (k i.E' = _ jko

= [_(sinTsin_i+cosTcos0icos_i)+_(sin3`cos_i-cos3`cos0isin_/)-

_. cos 3' sin 0i] ejk° [P"in 0, _o__,+_ _o_0,]

_i = Yo[_(sin3`cosOicosJpi-cos3`sin_i)-S(sin',/cosOisinSi+cos3`cos_bi)-

_. sin 3' sin oil e jk°[°"in°_ ¢o_,+_ _o. 0_]

which is assumed to be incident on the cylinder from the direction (Oi, @) and 3,

is the polarization angle where _ = cos 3`t} + sin 3`q_ is the electric field polarization.
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In these expressions, the difference between the observation and incidence angles is

denoted by" oi = o- o,.

The electric field associated with the incident and reflected fields is (tetermine(t

by traditional modal analysis which enforces a vanishing tangential electric field on

the surface of the cylinder (p = a). This field is given by

• ,,E_ yt = _eJkocosO, z __, jc°s"/c°sOi&_ + sin'_ kosinOip%
n_--OC.,

E_ yl = _e.ikocosO, z __, -c°s'y'c°SO, kosinOipa,,+jsin3'3,_ eJn(_ +s')
n_ --OCo

O0

"n _ 7

E_ yz = - cos T sin Oie jk°c°_°'z __, a,_e: ( 2 +_, ) (4.40)

where the modal coefficients are given by

J_ (kosinOia) H_2)(kosinOip)
a,_ = .In (kosinOip) - H(2 ) (kosinOia)

t

fl,_ : J',_ (kosinOip,- H(Ji){k(°k:inOn;2'a,H(_ 2}' (kosinOip)

' (kosinaia) H 21(kosinO p)
= & (/ osinO p) - H%' (lcosinO a)

.In (kosinOia) tt{2), (kosinOip)
& = J',_ (kosinOip) - H(2 ) (kosinOia)

(4.41)

In these, J_ (.) and Yn (') are Bessel functions of the first and second kind, respec-

tively. Primed expressions in (4.41) denote differentiation with respect to the argu-

ment (e.g. 3'r, (¢) = _J_ (_)). Note that the polarization angle (7) should not be

confused with the modal coefficient (7,,). For reference, the corresponding magnetic

fields are given by

H_ _'l = -Yo eak°¢°'°'_ Y2 jsin'TcosOi_,_-cos'lkosinOipe_n e' (=+e_,)
n_ --00

H_ *'l = Yoe jk°_°_°'' sinTcosOikosinOip 7n +jcosT& e jn(_+&)
"tl _ -- O0

O0

H_ yl = -Yosin3, sinOie ak°_°'°'* Y2 % eJ (7+*,) (4.42)
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If (4.42) is evaluated on the surface of the cylinder (p = a). a_ = 3,_ = 0 as required

since the normal component of the magnetic field (or the tangential component of

3 98)the electric field) must vanish oil a metallic surface and (4.42) reduces to ( ._ .

These doubly infinite series may be converted into singly infinite series which are

more amenable to numerical implementation

Ey'

= _eJko cos0,z {j cos 7 cos Oi& +

2 y_'j,_+l cos y cos 01& cos n(bi + sin _tko sin 0ip ,/n sin n&
nml

= _ e jko ¢o_o,z { j sin 3`/30 -

2 _ jn+l cos 7 cos 0i n
,_=, kosinOipa,_sin(nJpi)- sin -'//3,_cos (n(_i)

= c°s'[sinOieJk°c°sOiz{ _°'{-2_'2jnOtncOs(rt_i) }n:l

}
(4.43)

and

HS = _ YoeJkO cos0,z {j sin 3' cos Oiflo -t-

Hee = YoeJkO _osO,z{ j cos 3"60 +

n ()]}cos ? ko sin Oip a'_ sin n¢i

[  osO, o.() ()]}2_]j TM sin'), sin 0ip%_ Sin n$i +cos3`&cos n$i

{ ()}-YosinTsin0ie TM 3'0 + 2 _]jn%cos r_¢i (4.44)
n----'l

All of the formulae given above require numerical evaluation of the integrals which

may be performed with a mid-point rule. At each integration point, the magnetic

field is determined by truncating the infinite series in (4.43) so that the field value

satisfies the convergence criterion

cyl -- ___]lS_t(n)- E_ (,, 1)] I

_/llE_'(n- 1)II
< 0.00001 (4.45)
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where u E {p.o,z}. Since these series exhibit poor convergence for large radius

cylinders, the modal formulae (4.-13) are only suitable for relatively small radius

cylinders (i.e. ko sin0ia <_ 50). For larger radius cylinders, asymptotic expressions

similar to (3.29) and (3.31) are more practical.

When there is a discontinuity in permeability between material layers, a surface

term must also be included on the right-had side of (4.11). That term is given by

and may be evaluated in a similar manner as the ABC surface term (4.37). After

some manipulation, (4.46) is given by

assuming that the curved integration surface has h =/_ and that the cylindrical shell

shape functions (3.9) are used for field representation. For an interface surface which

has h = -_, the functional (4.46) is evaluated as

Jig° _°h- e

= -3koZoT

while if h = _, (4.46) is given by

1 ] L z, Lpb (z-2i)H_y _ (p,C)t,z)dpdz#_i b _ P

1 ] zt pb
(4.48)

fi sa = -jkoZo-[- Lb (p- P')HJY' (p,O_,z)dpdz (4.49)

For an interface surface which has h = -_, the functional (4.46) is evaluated as

-3o 0-7 < /,, , . (fi sa (p, _, zb) dpd49

{1 1];;• 8i _e _ri I af_d = 3koZo_ (p- /_i)H_ ut (p, cb, zb)pdpdb (4.50)



67

while if i_ = 5. (4.46) is given by

find = Jk°Z°T _ #r, , . (p- pi)H; u_ (p.O,z,)pdpdo (4.51)

The magnetic fields are computed using (4.44) vchere the series are truncated accord-

ing to (4.45).

With the specification of the surface and volume source functionals, the FE-ABC

methodology is now fully developed for a full range of typical applications. For

radiation problems, since the total field is equal to the radiated field, the FE-ABC

formulation is quite similar to the FE-BI formulation with the exception of replacing

the exact mesh closure condition on the surface of the cylinder with an approximate

condition at some distance above to the cylinder's surface. However, for scattering

analysis, in addition to the new mesh closure surface/condition, the excitation term

may include radome contributions. Thus for coated antennas, scattering analysis

requires additional volume and surface source terms which are a consequence of

using a scattered field formulation in the exterior region.



CHAPTER V

Scattering

One of the principal goals of this research was to conduct studies of the scat-

tering by cavity-backed antennas recessed in a circular cylinder. Over the course of

some forty years of radar cross section (RCS) investigations, the electromagnetics

community has learned techniques which suppress traditionally dominant scattering

contributions such as reflected and creeping waves associated with curved surfaces.

Having reduced these bulk scattering features through the use of exotic materials

and platform shaping, previously insignificant scattering contributions have become

increasingly important. Scattering by an array of cavity-backed antenna elements is

one such secondary contribution.

In the past, most conformal antenna array designs were performed using either

rigorous numerical formulations involving an infinite ground plane or approximate

techniques such as the cavity model. Planar solutions are suitable for near broadside

scattering provided the cylinder radius is large. However, since no circulating waves

are supported by a metallic plane, bistatic scattering analysis in the penumbra and

shadow regions of a cylinder cannot be obtained from planar results. Additionally,

creeping wave coupling creates a significant scattered field on the rear-side of the

cylinder even for backscatter measurements. Modern military aircraft demand low

68
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observablesover a full rangeof aspectanglesnecessitatingthe inclusion of creeping

waveeffects in any useful analysis technique. Approximate cavity modelsare use-

ful for radiation analysis at resonance;however, they are unsuitable for scattering

applications.

The two hybrid finite elementtechniquespresentedin this thesisprovide a means

of performing, in the caseof the FE-BI method, a rigorousanalysisof scattering by

cavity-backedantennaelementswhich are recessedin an infinite, metallic cylinder.

The FE-ABC method provides an approximate but more flexible technique which

may include the presenceof a radome. In this chapter, the FE-BI method will be

validated by comparisonwith data generatedby different numerical models. This

method will be shownto be highly accurate and, as implementedvia a BiCG-FFT

solver, highly efficient in terms of computational and memory demand. The FE-

BI method will then be used to study the scattering behavior of typical conformal

antennaelements. In particular, the effectof cavity sizeand curvature will be inves-

tigated. The results will suggestusefuldesignconceptswhich will aid RCSengineers

in developinglow observableantennaarrays.

The FE-ABC formulation presentedin this thesis will be compared to the re-

suits generatedby the FE-BI formulation. Their agreementwill confirm, for the first

time, that ABC termination schemesmay beusedaboveinfinite, metallic structures.

Previously, all FE-ABC applications involved closed, finite bodies. The FE-ABC

approachoffers considerableadvantagesover the FE-BI method sinceit may beeffi-

ciently usedfor computing the scattering by conformalantennasrecessedin doubly

curved platforms. Thus, it is essentialthat this technique be validated with a rig-

orous solution, beforeits application to the necessarilymore complexdoubly curved

structures. Additionally, the FE-ABC method providesa meansof readily including
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a complex, inhomogeneousradomewhich is inevitably placedabovea conformal eh'-

ment. This approachalsopermits lhe modelingof a radar absorbingmaterial (1{.-\._I)

coating which is typically placedaround a transparent radome. Sucha RA.",I laver

is usedto suppresscreepingwavesand, therefore, it is an importanl feature in low

observabledesignsand it is also useful in suppressingElectromagnetic Interference

(EMI).

5.1 FE-BI: Validation

Having solved for the electric fields induced by an incident plane wave, the com-

puted RCS data must be validated with known results. Available measured or con>

puted data are rather scarce and as a consequence, we are forced to rely on limiting

cases in order to validate this work. For example, as the radius of curvature de-

creases, a cylindrical-rectangular cavity will approximate a planar-rectangular cav-

ity. Another limiting case involves comparison of an elongated 3-D cavity with a

corresponding 2-D cavity for normal incidence (Oi = 90°). Finally, the infinite cylin-

der results are compared with a finite Body of Revolution (BOR) model for oblique

angles of incidence.

The first validation effort for scattering by cavity-backed patch antennas relies

on the fact that a small patch on a very large radius cylinder is quasi-planar and

approximates rather well a planar-rectangular patch. For our test we chose as a

reference a planar 3.678 cm x 2.75 cm patch residing on a 7.34 cm x 5.334 cm x

0.1448 cm cavity filled with a dielectric having e_ = 4. The equivalent patch on a 32.6

cm cylinder is 6.46°x 2.75 cm residing on a 12.90°x 5.334 cm x 0.1448 cm cavity.

At the operating frequency of 9.2 GHz, the cylinder has an electrical radius of 10Ao.

Figure 5.1 shows the results for the patch on a large radius cylinder with correspond-
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Figure 5.1: Comparison of RCS for a planar patch (3.678 cm × 2.75 cm) residing on

a 7.34 cm × 5.334 cm × 0.1448 cm cavity filled with er = 4 dielectric and

a corresponding quasi-planar patch on a large radius (10Ao) cylinder.
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ing data for the planar cavity-backedpatch. Clearly, the two t{CS patterns are in

excellentagreement,and although Figure 5.1 illustrates only monoslalic scatlering

in the O = 0 ° plane, additional runs for normally incident monostatic scattering and

various bistatic situations yield similar agreement.

Comparisons may also be made for elongated cavities and 2-D moment method

results. Long narrow cavities have very little axial interaction for principal plane

(0 = 90 °) incidence and therefore results based on this formulation should compare

well with corresponding 2-D data. It is well known that the 1RCS of the 3-D scattering

body of length L >> ,_o is related to the corresponding 2-D scattering of the same

physical cross section via the relation

aaD = 2 a2D (5.1)

Such a comparison is shown in Figure 5.2 for monostatic scattering by a 45 ° ×

5Ao × 0.1Ao cavity recessed in a cylinder with a radius of 1Ao for both principal

polarizations. Once again the agreement between the two results is excellent, thus

providing a partial validation of the formulation for highly curved geometries. Similar

agreement has been observed for bistatic scattering in the _9= 90 ° plane.

The planar approximation eliminates the effects of curvature, which is of primary

interest in this work, and the 2-D comparisons done above are only valid for normal

incidence. To consider oblique incidence on a highly curved structure, comparisons

with a Body of Revolution (BOR) code are made for wraparound cavities. Since

the BOR code can only model finite structures, an infinite cylinder is simulated by

coherently subtracting the far-zone fields of the finite structure without a cavity

from similar data which includes the cavity. Such an procedure mimics common

measurement practices and was found suitable for near normal incidence in the case

of H-polarization (7 = 90o) • This procedure is illustrated in Figure 5.3. An example
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Figure 5.3: Far-zone subtraction scheme for the simulation of an infinite cylinder.



calculation for the latter caseis givenin Figure 5.4whereabistatic scattering pattern

is presentedin the O = 0 ° plane due to a plane wave incident at (0, = 80_,o, = 0L').

The BOR model was a 10,ko long cylinder with 36 ° ogival end-caps. Tile wraparound

groove had a height of 3_o and a depth of 0.1,ko. Clearly, there is good agreement

between the FE-BI results and data based on the BOR formulation.

5.2 Scattering Studies

The previous comparisons serve to validate the formulation. Having done so, it

is instructive to examine the effect that curvature has on the scattering properties of

cavity-backed patch antennas. Consider a 2 cm x 3 cm patch residing on a 5.0 cm x

6.0 cm x 0.07874 cm cavity which is filled with a dielectric having ¢r = 2.17. Figures

5.5 and 5.6 illustrate the behavior of this geometry as a function of frequency and

curvature for E- and H-polarization, respectively. Evidently, the resonance behavior

of this patch is sensitive to curvature for both principal polarizations. The frequency

response for E-polarization is more sensitive to curvature since the radiating surface

field component is parallel to the long side of the patch and cavity. If the patch and

cavity were oriented so that the long side is parallel to the _direction, the response

to H-polarization would exhibit greater sensitivity. Such an effect is important to low

observable antenna designers since they want to operate the antenna in the region

of lowest RCS. This low return region is a consequence of delicate cancellations due

to the physical layout of the aperture. Such cancellations are not as complete for

highly curved structures as they are for planar cavities.

Conformal antenna designers often use wraparound antenna arrays to achieve om-

nidirectional coverage. Two different configurations are typically used: a wraparound

cavity where the cavity is filled with a single continuous collar of dielectric and dis-



76

20.0

10.0

r_ 0.0
r,..)

°,Jl

°_,_

-10.0

FE-BI

o BOR

-20.0
0.0 30.0 60.0 90.0 120.0 150.0 180.0

Observation Angle (0) [deg]

Figure 5.4: Comparison of the RCS computed via the FE-BI method and a BOR code

for a 3Ao x 0.1Ao air-filled wraparound cavity excited by a H-polarized

('7 = 90 °) plane wave with oblique incidence (Oi = 80 °, q_i = 0°).



77

10.0

.0

-10.0

-_ -20.0

r.)
-30.0

-40.0

-50.0

a=5cm

......... a= 10cm

, .d_, ...... a=15cm
....... a=20cm

_se
i

I 9 ..... a= 100cm
i

I • Planar
f

'1

3.0 3.5 4.0 4.5 5.0

Frequency [GHz]

Figure 5.5: RCS frequency response for a 2 cm x 3 cm x patch residing in a 5 cm

x 6 cm x 0.07874 cm cavity with e, = 2.17 as a function of curvature

for E-polarization (7 = 0°) •



78

20.0

10.0

"" .0

h.....d

¢'q

r_
-_ -10.0

-20.0

-30.0

I I I

a=5cm _\ ..._----"-

......... a=lOcm X'_ /

...... a= 15cm

\,,,,,....

...... a=20cm _,...;
' /o

..... a= 100cm X ,
,/

• Planar

-40.0 .... I .... J- i ....

4.0 4.5 5.0 5.5 6.0

Frequency [GHz]

Figure 5.6: RCS frequency response for a 2 cm × 3 cm x patch residing in a 5 cm

× 6 cm × 0.07874 cm cavity with cr = 2.17 as a function of curvature

for H-polarization (7 = 900) •



79

crete cavities symmetrically placedaround the circumferenceof the cylinder. These

two configurations are shown in Figure 5.7. Since near resonance, the radiation prop-

erties of these two types of antennas are similar if all elements are uniformly driven.

any RCS advantage which one might possess could govern the appropriate choice of

arrays. Figure 5.8 compares the E-polarized monostatic scattering at 3 GHz in the

0 = 90 ° plane for a continuous wraparound cavity and four discrete cavities; where

the patches and cavities are identical to those used in the previous example. Not sur-

prisingly, the continuous wraparound structure has a higher return due to coupling

within the substrate. However, since in this case the scattered field is due to the

z-component of the surface field (_b-directed magnetic currents), both cavities yield

large scattered fields in the four directional lobes. Figure 5.9 is the corresponding

comparison for H-polarization. In this case, the scattered field is attributed to the

_component of the surface fields (z-directed magnetic currents). Therefore, sub-

strafe modes diffract near the patch resulting in discrete lobes for the discrete array

while creeping waves shed isotropically for the continuous wraparound cavity. Low

observable designs will favor discrete cavity arrays over wraparound cavities since the

scattering may be channeled in preferred directions and the overall scattering level

is consistently lower. A final example is shown in Figure 5.10 where we observe that

other than the expected higher scattering from the wraparound cavity, the scattering

behavior of the two arrays in the ¢ = 0 ° plane for H-polarization is very similar.

5.3 FE-ABC: Validation

In the previous section, the FE-BI formulation was used to investigate the role

that both curvature and cavity dimensions play in determining the overall scattering

properties of cavity-backed conformal antennas. The FE-BI method is extremely
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powerful and efficient when implemented with a BiCG-FFT solver, tlowev('r, as

previously mentioned, it is not very flexible due to the uniform surface gridding r,'-

quirement and limited number of available dyadic Green's functions. Ralher. lhc

FE-ABC method holds greater promise for impact since it can readily be used to

model arbitrary, patch and cavity, shapes, coated and doubly curved conformal an-

tennas.

To date, the FE-ABC method has only been used to study, tile scattering by

finite bodies. In this section, the FE-ABC method will be compared with rigorous

FE-BI results for typical uncoated cavity-backed antennas which are recessed in an

infinite metallic cylinder. Since the ABC surface must be displaced a distance from

the cavity aperture in order to recover accurate results, the minimum displacement

will be determined for computational domain minimization. Since the ABC absorbs

outgoing waves, each principal polarization and typical incident angle directions will

be examined.

Consider a 2 cm x 3 cm patch antenna which is printed atop a metallic cavity

encasing a 5 cm x 6 cm × 0.07874 cm substrate which has a dielectric constant of

er = 2.17 and scattering calculations are made at 3 OHz. The second-order ABC

(4.25) is placed r,Xo from the cavity aperture while the lateral walls (e.g. fi = +_ or

fi = +2) of the ABC are placed 0.5,_o from the cavity aperture. Experience suggests

that 0.5,_o lateral displacement is sufficiently large so that the only surface that need

be considered is the normal (fi = _) surface which is placed at different distances,

r, from the cavity aperture as shown in Figure 5.11. The bistatic scattering for

normal incidence (_bi = 0°,0i = 90 °) and observation in the 0 = 90 ° plane due to an

E-polarized plane wave is shown in Figure 5.12. To determine of the effectiveness

of the ABC, Figure 5.1a illustrates a ten degree section of Figure 5.12 near the
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backscatter region. Evidently, if the ABC surface is placed at least 0.3Ao from the

surface, the FE-ABC method recovers the FE-BI data to an acceptable accuracy.

The corresponding patterns for H-polarization are shown in Figures 5.14 and 5.15,

respectively. For this polarization, the FE-BI results are recovered when the ABC

surface is only 0.1Ao from the cavity aperture. Such discrepancy in performance

between the two principal polarizations illustrates the main drawback of the FE-

ABC method. Since the ABC absorbs only the propagating waves, it must be placed

beyond the region where near-fields are significant. However, the near-field/far-

field boundary is problem and excitation dependent. Nevertheless, experience has

shown that an ABC displacement of 0.3)_o is a good rule-of-thumb for scattering

computations.

In the previous examples, the incident field was normal to the patch where the

ABC is seen to work quite well. However, the performance of the ABC must be

shown for grazing and rear-side incidence as well as normal. To do so, the same

antenna element used previously, with the ABC surface displaced 0.3_o from the

cavity aperture, is compared in Figures 5.16 and 5.17 with the FE-BI results for

observation in the 0 = 90 ° plane. The FE-ABC method is seen to recover the

FE-BI results even for incidence from the rear side of the cylinder.
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Figure 5.11: Cavity-backedpatch antenna with ABC mesh termination.
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CHAPTER VI

Radiation

In the previous chapter, the scattering behavior of cavity-backed antennas which

are recessed in a metallic cylinder were investigated. Both the FE-BI and FE-ABC

methods were used and found to be accurate as compared to available reference data.

In this chapter, the radiation parameters of conformal patch antennas mounted on

singly curved surfaces are examined. In particular, the antenna pattern and input

impedance of such patch antennas are investigated.

Approximate analysis methods such as the cavity model have been used to design

conformal antennas. Initially, planar solutions [3] were obtained which have been

found to match measured antenna patterns for operation at resonant frequencies.

Since the cavity model assumes single mode fields below the patch, such agreement is

understandable. However, in contrast, input impedance calculations using the cavity

model are not accurate with respect to either input resistance or resonant frequency

localization. The reason for this inaccuracy is the fact that a typical probe feed

generally excites multiple modes and the fact that, in reality, the field is not confined

to the region immediately below the patch. This latter bias is partially compensated

by utilizing effective permittivities rather than measured permittivities. Typically,

with this empirical modification, the resonant frequency localization is acceptable;

93
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however, tile input resistance calculations remain inaccurato in comparison with

measured data.

Although the cavity model is limited to resonant palches and its inl)ut impedance

predictions are inaccurate, the cavity model has been successfully extended to rcctangt, lar-

cylindrical patch antennas [4, 5, 53]. Such extensions to the cavity model have been

used to explore the effect of curvature on both the radiation pattern and the input

impedance of curved patches. Once again, the calculated patterns compare favor-

ably with measurements [5, 54] while the input impedance calculations are rather

poor. Use of an effective permittivity improves the resonant frequency localization;

however, the input resistance is still unacceptably inaccurate for design use.

Patch antennas fed by a probe have a very small bandwidth. In an effort to

analyze printed broadband antennas such as spirals, rigorous numerical techniques

based on integral equation formulations have been presented in the literature [6]-[9].

Since the metallization pattern is assumed to be printed atop a dielectric coated

groundplane, all of these formulations employ a complex dyadic Green's function.

Typically, a rather simplistic feed model for a current probe is utilized and although

the radiation pattern of such a model agrees with measurement, the input impedance

once again has unacceptable error. Recently, Aberle, Pozar and Birtcher [55] have

investigated improved feed models which include a finite probe diameter and an

impressed voltage source rather than a current source. Although most numerical

formulations require a planar structure, these integral equation techniques have also

been extended to patches printed on a coated cylinder [11, 12]. Even though such

formulations have proven useful for antenna analysis and design, the assumption of

a coated, infinite substrate is not realistic. In practice, spurious coupling between

elements within an array will occur on such a structure and as a consequence, each
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antenna element is typically placed within a substrate filled metallic cavity. Aberle

recently developed an integral equation formulation for planar cavity-backed an-

tenna elements [13]. However, this formulation suffers, as do most integral equation

techniques, from a very large computational and memory burden due to tile fully

populated matrix and complex dyadic Green's function. If uniform zoning is used

on the patch surface, the resulting matrix will be block Toeplitz and accordingly it

may be efficiently solved using the BiCG-FFT solver employed in this work. How-

ever, such an implementation would still require a highly complex dyadic Green's

function. In addition, inhomogeneous substrates or radomes may not be efficiently

solved using a surface integral equation.

In response to the inefficiencies and limitations of the integral equation formu-

lations, the FE-BI method was introduced by Jin and Volakis [17]. This approach

has proven quite successful for planar antenna radiation pattern calculations. As

discussed earlier, the inaccurate input impedance data computed by that code may

be remedied by using an accurate feed model which is currently under investigation

at the Radiation Laboratory. In this thesis, the FE-BI formulation is extended to

circular cylinder platforms.

In this chapter, the two finite element formulations, the rigorous FE-BI method

and the approximate FE-ABC method, will be utilized to study cylindrical- rectan-

gular patch antenna radiation. First, the FE-BI method will be validated for antenna

pattern applications by comparison with measured data. The input impedance cal-

culations will be seen to suffer from the same inaccuracies as the planar implemen-

tation due to the use of a similar simplistic probe. After validation, we will examine

the effect of curvature on the pattern and the input impedance of the cylindrical-

rectangular patches. An important class of antennas which wrap around the cir-
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cumferenceof the platform cannot be studied using planar models. Suchantennas

areused for communicationsand guidancecontrol sinceomnidirectional coverageis

essential.The proposedFE-BI haslhe capability of examining three typical types of

wraparound antennas: discrete cavity, continuous cavity and single collar antennas.

Since all three types of antennas may be analyzed by tile FE-BI method, comparisons

may be made between the three in terms of coverage and mutual coupling between

elements. Finally, as was done in Chapter V for scattering calculations, the FE-ABC

method will be compared to the FE-BI method and a minimal ABC displacement

will be established.

6.1 FE-BI: Validation

Two types of patch antenna elements are investigated and these are shown in

Figure 6.1. Each patch is ac_° x b in size where a denotes the radius of the cylinder

and c_ is the subtended angle of the patch. A patch whose radiating side walls

form constant C-surfaces is termed an axially polarized patch and is fed at ¢/= 2"

Circumferentially (or azimuthally) polarized patches have radiating walls forming

b Observation in the 0 = 90 ° planeconstant z-surfaces and are typically fed at zf = 7"

is the E-plane for circumferentially polarized patches and the H-plane for axially

polarized elements. The terminology originates with the cavity model for patch

antennas. We will now characterize a typical cavity-backed patch antenna.

Several computed and measured antenna patterns have been published for patches

printed on a coated cylinder. One such patch, which is 3.5 cm x 3.5 cm, was used

by Sohtell [54] to compare the accuracy of the cavity model [5] to a surface current

integral equation [12]. The measured data was taken at 2.615 GHz for a metallic

cylinder which was 63.5 cm long and had a radius of 14.95 cm. The cylinder was
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coated with a 0.3175cm uniform dielectric having relative permitlivitv of (_ = 2.32.

Data was taken for -180 ° _< o _< 180 ° in the 0 = 90 ° plane corresponding to the t:-

plane for circumferentially polarized elements and the It-plane for axially polarized

patches. Figure 6.2 compares these measured patterns with data generated using

the FE-BI formulation for an identical patch placed within a 360 ° × 7 cm cavity.

This wraparound cavity best simulated the measured coated cavity. Note thai the

H-plane patterns are symmetric due to the symmetric placement of the feed, whereas

the E-plane patterns are not symmetric. The placement of the feed was not specified

in [54]; however, the agreement for the E-plane pattern shown in Figure 6.2 indicates

that the position used in the FE-BI model (aOSf = -1 cm) is reasonable. The feed

was placed at z! = -1 cm for the axially polarized (H-plane) case.

In addition to single patches, the FE-BI formulation may be used to design mi-

crostrip arrays. Such an approach includes mutual coupling between elements which

is ignored by the cavity model. Furthermore, the FE-BI formulation consumes less

computational resources than a comparable integral equation formulation due to the

sparsity of the FE matrix. The H-plane pattern of a four element array was measured

to gauge the accuracy of the FE-BI approach. Each element is 2 cm x 3 cm and

placed within a 5 cm x 6 cm x 0.07874 cm cavity which is filled with a dielectric

having er = 2.17. The cylinder is 91.44 cm long and has a radius of 15.24 cm. The

cavities are placed symmetrically around the cylinder (e.g. a patch is centered at 0 °,

90 °, 180 ° and 270°). Only the patch centered at 0 ° was excited while the remaining

patches were terminated with a 50f_ load. The driving patch is axially polarized and

the feed is located at zf = -0.375 cm. Figure 6.3 illustrates the excellent agreement

between the FE-BI formulation and the measured H-plane data.
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Figure 6.2: Comparison of measured [54] and computed data for a circumferentially

polarized element (E-plane) and an axially polarized element (H-plane).

The 3.5 cm x 3.5 cm antenna was printed on a cylinder with a radius

of a = 14.95 cm and a 0.3175 cm coating having er = 2.32. The probe

feed was place at (a¢i , z/) = (-1.0,0.0) for the circumferentially polarized

patch and at (a¢l , z/) = (0.0,-1.0) for the axially polarized antenna.
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Figure 6.3: H-plane pattern for a four element patch array. Each of the patches is 2

cm x 3 cm and are placed symmetrically around the cylinder. Only the

patch centered at 0 ° is fed while the other patches are terminated with

50_ loads.
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6.2 Radiation Studies

In Chapter V, discrete cavity arrays were found to have a significantly lower

radar cross section compared to a continuous wraparound array. Thus, the size of

the cavity had a significant effect on the scattering properties of the array. The

axially and circumferentially polarized antennas used by Sohtell [54] were placed

within cavities which were 7 cm high and approximately 30 °, 50 °, 90 °, 180 °, 270 °

or 360 ° in angular extent. Figure 6.4 illustrates that azimuthal cavity size has little

effect on the radiation pattern for a circumferentially polarized element. A similar

comparison for the axially polarized patch is shown in Figure 6.5. The back lobe

of the antenna (near _ = 180 °) is very small for cavities less than 180 ° in extent

but increases for larger cavities. For cavities which lie on the forward face of the

cylinder, the substrate modes diffract off the cavity walls; an effect which has little

influence on the main lobe of the pattern. However, for wraparound cavities and

cavities which extend into the back side of the cylinder, the substrate modes shed

like creeping waves giving rise to the back lobe.

Having established the effect of cavity size on the antenna patterns, it is instruc-

tive to gauge the effect that curvature has on the resonance behavior (or gain) of

patch antennas. The two antennas were placed in 14 cmx 14 cm cavities recessed

in cylinders with increasing radius. The frequency was allowed to vary from 2.4 GHz

to 2.7 GHz and the peak radiated power ({Ee,¢] 2) was recorded at each frequency.

Figure 6.6 illustrates that the resonance frequency increases with increasing curva-

ture for a circumferentially polarized antenna, but the maximum radiated power

is similar regardless of element curvature. Note in the cavity model, the radiating

edges for a circumferentially polarized patch are the azimuthal walls of the cavity
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Figure 6.4: Effect of cavity sizeon the E-plane radiation pattern of a circumferen-
tially polarized patch antenna.
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Figure 6.5: Effect of cavity size on the H-plane radiation pattern of an axially polar-

ized patch antenna.
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Figure 6.6: Resonance behavior of a circumferentially polarized patch antenna for

various cylinder radii.
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(see Figure 6.1) which have a constant separation regardless of tile cylinder radius.

However, the axially polarized patch has decreasing resonant gain with increasing

curvature as shown in Figure 6.7. For this patch, radiation is attributed to the

axial magnetic walls of the cavity model which have increasing angular separation

with decreasing curvature. These walls radiate strongly away from the pattern peak

(¢ = 0°). Accordingly, the gain of an axially polarized antenna decreases with in-

creasing curvature. The radiation pattern of a circumferentially polarized antenna

is largely unaffected by curvature as shown in Figure 6.8 when excited at a resonant

frequency. However, the radiation pattern of the axially polarized antenna broad-

ens as the curvature increases which is illustrated in Figure 6.9. Once again, both

relationships are readily explained by considering the effect curvature has on the

orientation of the cavity model radiating walls.

In addition to the gain and pattern of an antenna, designers require the input

impedance for matching purposes. For the antenna examined above (in a 14 cm x 14

cm cavity), the input impedance was calculated from 2.4 GHz to 2.7 GHz for various

cylinder radii. Figure 6.10 illustrates that the input impedance of a circumferentially

polarized patch antenna is not affected by curvature while Figure 6.11 shows that

increased curvature reduces the input impedance of an axially polarized patch. This

observation agrees the the results reported by Luk et. al. [53].

An important application of conformal antennas on drones is for guidance control.

An omnidirectional pattern is required for this application since the presence of a null

would have a disastrous effect on the drone's guidance capabilities. Omnidirectional

coverage may be obtained by placing a wraparound array on the cylinder such as the

ones shown in Figure 5.7. Consider the axially fed 2 cm x 3 cm patch used previ-

ously. Figure 6.12 illustrates the coverage obtained by various discrete wraparound
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Figure 6.8: Variation of the radiation pattern shape with respect to curvature for a

circumferentially polarized antenna.
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Figure 6.9: Variation of the radiation pattern shape with respect to curvature for an
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Figure 6.10: Input impedance of a circumferentially polarized patch antenna for var-

ious cylinder radii. The frequency range was 2.4 GHz to 2.7 GHz and

the cavity size was 14 cm x 14 cm.
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Figure 6.11: Input impedance of an axially polarized patch antenna for various cylin-

der radii. The frequency range was 2.4 GHz to 2.7 GHz and the cavity

size was 14 cm x 14 cm.
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Figure 6.12: Coverage of various uniformly fed discrete wraparound arrays. Each

patch is 2 cm × 3 cm and the feed point is at (_b/= _bc_nt_r,z/= -0.375

cm) where _bc,,_t,r denotes the azimuthal center of each patch. The array

is operated at 3 GHz.
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arrays (see Figure 5.7a) operated at 3 GHz which corresponds to a cylinder radius <)f

1.52789,_o. Evidently, as elements are added to the array, phase interference caus('.,

side lobes to develop which are seen as ripples in the pattern. The geodesic distance

between each element center is: 4.8_o, 2.4_o, 1.2)_o and 0.6,ko for two. four, eight

and sixteen patches, respectively. When sixteen elements are used, the inter-elelnent

spacing is sufficiently small as to suppress side lobes and the desired onmidirectional

pattern is obtained. Generally, the required number of radiators will scale with the

radius of the cylinder. Figure 6.13 shows similar results for a continuous wraparound

array (see Figure 5.7b).

Another common type of wraparound antenna utilizes a single, continuous metal-

lic collar as a radiating element. Figure 6.14 illustrates the pattern for such an an-

tenna when uniformly excited probe feeds are place symmetrically around the collar

with zf = -0.375 cm. The inter-feed spacing is identical to the center element spac-

ing used in the previous examples. Evidently, as the number of feeds increases, the

currents supported by the collar become more uniform and for the case of sixteen

feeds, the pattern is omnidirectional. However, notice that for this case, even when

only eight feeds are used, a +1 dB ripple is obtained.

6.3 FE-ABC: Validation

As previously mentioned in Chapter V, the FE-ABC method is considerably

more flexible than the FE-BI approach. However, the FE-ABC formulation requires

a computational domain which extends some distance beyond the cavity aperture.

In Chapter V, a ABC surface displacement of 0.31o was shown to be sufficient for

most calculations. In this section, similar comparisons are made for both radiation

pattern and input impedance calculations.



113

r-
°,..q

N
°,..q
,....q

O
Z

'." _ -,',_ " - "IX' -&-_-._.--.... _-

I' I "l '1 ' _ I

I'l I _1 '\ I ' 1

t_ L'l" ,' ; ,/,, _ _f , , I,f
| o j i o,l I, ',,:,,/' !''' '

f _l ' , '1 J

!iI,' • 'II ,, , ,,/_ , ,° , | ,, /' , IPll, ', ,II'II
'' 'I' :'" 't': " ' '

t],, 't ",,A;'I ,, ,, I ,, ,, Ii, ' ,,ll
_,, ,,_ ,,,,/,,,; ,, ,,_ , , Is,' ,,_

• ' "i

, , l , | , i • , , [ , • , , , ,

10.0

0.0 -,_- - r

'_ ' IIt _ * /I

I , _ ,11-" |1 , /

I "I b _ I I'

'_,_ _'_ I'1

- 10.0 , ' , . ,,
',' , ' ', '11

.... ,,, ,,:,

-20.0

-30.0 . . I .....
- 180.0 -90.0 0.0 90.0 180.0

Angle [deg]

One patch

......... Two patches

...... Four patches

...... Eight patches

..... Sixteen patches

Figure 6.13: Coverage of various uniformly fed continuous wraparound arrays. Each
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Consider a 2 cm × 3 cm patch antenna which was printed atop a metallic cavity

encasing a 5 cm × 6 cm × 0.07874 cm substrate having a dielectric constant of ¢.

= 2.17. This is the same antenna used for the FE-ABC validation in Chapter \'

for scattering calculations. The second order ABC was place rAo from the cavity

aperture while the lateral walls (e.g. fi = -+-¢ or fi = -+-_.) of the ABC were placed

0.5Ao from the cavity aperture. The H-plane antenna pattern for an axially polarized

patch is shown in Figure 6.15 where the probe feed is placed at col = 0 ° and zf =

-0.375 cm and the operating frequency is 3 GHz. Figure 6.16 shows the main

lobe peak value of this antenna for various ABC surface displacements. In this

example, the radiation pattern calculated using the FE-ABC formulation was seen

to be in good agreement with the pattern computed using the more rigorous FE-

BI approach. Similar comparisons for a circumferentially polarized antenna element

(e.g. 3 cm x 2 cm patch within a 6 cm × 5 cm x 0.07874 cm cavity with a radial

feed at ¢1 = -1"41°, z] = 0 cm) are given in Figures 6.17 and 6.18. Evidently,

placement of the ABC 0.3)_o away from the cylinder's surface is sufficiently accurate

for patterns obtained from circumferentially polarized as well as an axially polarized

patch antennas. However, as illustrated in Figure 6.19, the FE-ABC method is

not sufficiently accurate for input impedance calculations. For the antenna used

in this comparison, the FE-ABC solution produces an erroneous value even when

the ABC surface is 0.4)_o from the aperture. Evidently, the FE-ABC method does

not accurately model the fields below the patch radiator unless the ABC surface is

placed prohibitively far from the aperture. Even a very large ABC displacement

will be inaccurate since the increasing computational error associated with a very

large mesh will dominate the decreasing approximation error on the ABC surface.

However, as shown in the previous example, far-field calculations are more forgiving
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Figure 6.15: Convergence of the second-order ABC as a function of displacement

from the cavity aperture for axially polarized patch. The reference data

is provided by a rigorous FE-BI formulation for the same cavity-backed
antenna.
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Figure 6.16: Magnified view of Figure 6.15.
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and hencethe FE-ABC method is usefulfor radiation pattern calculations.



CHAPTER VII

Conclusion

7.1 Summary

In this thesis, a new approach for analyzing cavity-backed cylindrically confor-

mal antenna arrays was presented. Previously, such antennas were designed using ap-

proximate planar cavity models or rigorous integral equation formulations. Although

both of these techniques have been extended to coated cylinders, planar solutions

were typically used even for curved platform designs due to their simplicity. Both

techniques work reasonably well for resonant antenna pattern calculations. However,

for scattering or input impedance calculations, the integral equation method has high

computational demands whereas the cavity model is too approximate. Additionally,

both methods typically involve metallic patches printed atop a coated groundplane.

A cavity-backed integral equation formulation is available; however, the calculation

of the internal dyadic Green's function limits its utility.

Due to our past favorable experience with the application of FE-BI formulations

to planar cavity-backed planar arrays, in this work the FE-BI method was applied to

curved conformal arrays. A critical feature of the formulation is the use of the itera-

rive BiCG-FFT solver which greatly reduces the memory and computational burden

as compared to a direct implementation. Thus by using uniform surface gridding,

122
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impressive computation speeds have been obtained at tile expense of grid flexibility.

Another important aspect of this work is the use of creeping wave expressions for the

calculation of the cylindrical dyadic Green's function. The traditional modal series

expressions of this Green's function imposes a prohibitive computational burden on

the boundary integral calculation while the creeping wave series expressions are both

efficient and accurate when used for a large radius cylinder.

The FE-BI formulation has been successfully used to study the scattering be-

havior of conformal antennas. Discrete cavity arrays have been shown to have a

lower overall RCS as compared to equivalent continuous wraparound arrays. The

primary reason is that the cavities suppress creeping and substrate wave coupling.

Such waves diffract into preferred directional lobes which allow the designers to chan-

nel the scattered field away from the source. Conversely, wraparound collar arrays

radiate isotropically resulting in a more uniform pattern. Therefore, low observable

antenna designers would prefer discrete arrays over continuous arrays due to the

increased control available with the former conformal elements.

The effect of curvature on scattering resonance was also examined. Evidently,

for either principal polarization, the resonant scattering is not affected by curvature.

However, depending on the orientation of the patch, the null which succeeds the

resonant peak is curvature dependent. Highly curved patches have a more shallow

null than planar or nearly planar patches. RCS engineers would like to place such

a null in an expected threat frequency and accordingly, they would prefer a planar

patches in such circumstances.

In addition to scattering studies, the FE-BI formulation was used for radiation

analysis. Although this implementation is sufficient for radiation pattern calcu-

lations, as was the case with the planar formulation, the infinitesimally thin probe
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feed was found to be too simplistic for accurate input impedance compulations. Nev-

ertheless, since this feed is sufficient for resonant frequency localization, the l:t-_-lll

method was used to study the effect of curvature on the resonant frequency of curved

patch antennas. Evidently, the resonant frequency of an axially polarized element

is sensitive to curvature while a circumferentially polarized element is insensitive to

curvature. Likewise, the co-polarized pattern associated with the axially polarized

antenna exhibited a marked increase in the back lobe while the pattern due to the

corresponding circumferentially polarized element was essentially unchanged by cur-

vature. Also, the axially polarized element's co-polarized pattern is dramatically

effected by cavity size while the corresponding circumferentially polarized pattern is

barely altered by increasing curvature. Likewise, the input impedance of an axially

polarized element is dependent on the curvature of the substrate while the circum-

ferentially polarized element has a input impedance which is insensitive to curvature.

Another important aspect of this thesis was the application of the FE-ABC

method for radiation and scattering by cavity-backed antennas on an infinite struc-

ture. In this, a mixed total/scattered field formulation was introduced which substan-

tially reduced the likelihood of error propagation and decreased the computational

effort of the implementation. New second-order conformal ABCs [25] were used in

this FE-ABC method which greatly reduced the computational domain. An ABC

displacement of only 0.3,_ is usually sufficient for both scattering and radiation pat-

tern calculations. However, no reasonable displacement was found which yielded

accurate input impedance data. The FE-ABC method was found to be accurate for

both bistatic and backscatter calculations even for incidence in the rear side of the

cylinder. Thus, the presence of the ABC does not appear to alter the creeping wave

interactions on the surface of the cylinder. Both principal polarizations were used
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for the scattering study aswell asaxial and circumferentially polarizedradiating an-

tenna elements.We expect that tile FE-ABC method will be accuratefor arbitrary

incidenceand polarization.

7.2 Future Work

Within the framework of this thesis, two obvious avenues of research are sug-

gested: development of an improved feed model and application of the FE-ABC

method to doubly curved and coated conformal antennas. Historically, the develop-

ment of feed models for finite element applications has paralleled the similar develop-

ment of feeds for integral equation formulations. Both methods initially employed a

simple infinitesimally thin wire probe. Integral equations then used increasingly more

advanced feeds until the current state-of-the-art, the base voltage gap. Such a voltage

gap source was used by Aberle [55] where the current supported by the metal wire is

determined via an integral equation. The finite thickness of the wire is simulated by

placing the current expansion functions at the center of the wire while testing at the

outer radius. Unfortunately, such an approach is not readily implemented in a finite

element formulation though advanced FE feed models are desirable. For example,

Gong and Volakis meshed a coaxial cable feed using tetrahedral elements to a point

somewhat below the cavity where the lowest order coaxial mode was used as a coax-

ial aperture source. This technique, although rigorous, yielded poorly conditioned

matrices and imposed a prohibitively expensive computational and memory burden.

A different approach is to apply the lowest order coaxial mode across the aperture of

the cable at the base of the cavity itself. Such a model will work quite well at the res-

onant frequency since in a matched condition, the only coaxial mode present at this

aperture will be of the lowest order. However, for operation away from resonance,
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the mismatchat the cableaperture would require higher-ordercoaxial modes. :\ kov

aspect of this feed model is to use a voltage continuity condition to couple the cal)h,

aperture fields to the interior fields. Thus, the challenge is in matching the voltage

due to higher order modes with the potential within the cavity. If however a field

continuity condition is used, mixed elements must be combined perhaps through tile

use of a boundary integral.

Although this work is useful to the design community in and of itself, its main

purpose was to provide a key step in the evolution of conformal antenna simulation

from planar structures to doubly curved and coated platforms. The FE-BI technique

was used to validate the FE-ABC method for singly curved antennas. Additionally,

the FE-ABC method was seen to be accurate for scattering and radiation pattern

calculations by cavity-backed structures which are recessed in an infinite metallic

surface. With confidence, similar formulations may be developed for doubly curved

and coated antenna elements. To do so, new distorted brick elements should be de-

veloped. Such elements will not be divergence free and hence the method will require

a penalty term; however, use of distorted bricks will allow custom mesh generators

to be used which would alleviate the need to utilize a sophisticated (and expensive)

general purpose mesh generator such as SDRC-IDEAS. The FE-ABC method should

be used rather than the FE-BI approach since a doubly curved surface does not al-

low use of a BiCG-FFT solver and hence the computational and memory burden

of a FE-BI method is prohibitive. Additionally, the FE-ABC approach allows the

introduction of complex, inhomogeneous material radomes. For such coated geome-

tries, the equivalence principle will require two vector currents on the computational

domain border for far-zone field computations. The reflected fields will need be

determined for a doubly curved surface via high frequency techniques and efficient
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on-surface and far-zone formulae will have to be developed.
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APPENDIX A

Fock Functions

The asymptotic form of the dyadic Green's function with observation both on the

surface of the cylinder and in the far field involves Fock functions. These have been

extensively studied and tabulated by Logan [40]. In this appendix, the numerical

evaluation of these functions is performed for both small arguments and large argu-

ments.

The on-surface Fock functions used in this work are

1 .r4 _ oov(_) = -_/,_ f w_(T)_j_
2 V- j__,2., w'_(,)_ --

u(_) = e j3_/4 _} /o w'_(r) e_J¢.d r (A.1)

I

where w2(r) denotes Airy functions of the second kind and w2(r ) is its derivative

with respect to r. For small arguments (( < 0.6), the asymptotic expansion of (A.1)

is given by

3_ 7 7 _j__(_ +~ 1.0- -_-_ + j _ + _-i_v_ _ _ ...

~ 1.0- -_-,_ + j _ + _/_-_ _ + ...

while a rapidly converging residue series is used for _ > 0.6

10

V(_) "_ : e -j_ _ E (T:) -1 e-J"r:

n=l

(A.2)
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t

Zeros of the u'2(r) and w2(r)

I t

r_ = [r,,t(-a_ and r_ = [%]e-J_

n

1 2.33811

2 4.08795

3 5.52056

4 6.78661

5 7.94413

6 9.02265

7 10.0402

8 11.0085

9 11.9300

10 12.8288

1.011879

3.24819

4.82010

6.16331

7.37218

8.48849

9.53545

10.5277

11.4751

12.3848

t

where rn and %

the Table A.1

The far-zone Fock functions are given by

Table A.I: Zeros of the Airy Function

10

u({) _ = 2eJi v/-_{} y_ (rn) -1 e -j¢" (a.3)
n-_l

t

are zeros of w2(r) and w2(r), respectively. Those zeros are given in

jl eJ_r

-  ZiT)e"
jl ej_r

f(O(_) _ _fr w--_ dr

d
a(0({) = g(0(Oc, 3

F(O(_) = f(')(()eJg (A.4)
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s

where wl(r) denotes Airy functions of the first kind. u'l(r ) is its derivative with

respect to r and the appropriate integration contour (F) is given by Logan [40 i. I wo

of the functions required in this work, g(0)(() and g(1)(_), may be calculated using

g(Ol(¢)= 2.0e -j_ 3 _ < -1.3

6
= 1.39937+ _ rn! (_)m _1.3__<0.5

rn=l

= o'(m)Ai(m) 0.5 < _ < 4.0

= 1.8325e _ > 4.0 (A.5)

( 0.25 o.25 .,3- j2.0 _2 +j _ _4 ] e--33 _ < --2.8

= _ (_)m-i-2.8_< __< 0.5

rnml

10 e[_ot(m)(]

= _¢_ Ai(m) 0.5<_<4.0
rn-_-I

= -1.8325 (0.8823 - j0.5094 -t- j_2)

with constant x = e -jS'q_ and the coefficients for (A.5) and (A.6) are given in Table

A.2. In a similar manner, f(o)(_) may be computed using

0.25 0.5 ._Z= j2( 1- _---5-+--_)e -'3 _<-1.1

c(m)
= 0.77582+e -_'q3_ m! (_¢)" -l'l-<s ¢<_0.5

m----1

10 e[,_,_(_)¢]

-= e-JTr/3 E Ai'(m) 0.5 < _ _< 4.0
gnu1

= 0.0 _>4.0 (A.7)

which utilizes the constants in Table A.3
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Constantsfor (A.5) and (A.6)

ITI

1

2

3

4

5

6

7

8

9

10

c(m) c_'(rn) Ai(m)

0.7473831

-0.6862081

-2.9495325

-3.4827075

8.9378967

56.1946214

1.01879297

3.2481975

4.82009921

6.16330736

7.37217726

8.48848673

9.53544905

10.52766040

11.47505663

12.38478837

0.5356566

-0.41901548

0.38040647

-0.35790794

0.34230124

-0.33047623

0.32102229

-0.31318539

0.30651729

-0.30073083

Table A.2: Constants for g(O)(_) and g(')(_).
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Constants for (A.7)

c(m) _(rn) Ai'(m)m

1

2

3

4

5

6

7

8

9

10

1.146730417

0.86284558

-2.0192636

-9.977776

-14.59904

49.0751

2.33810741

4.08794944

5.52055983

6.78670809

7.94413359

9.02265085

10.04017434

11.00852430

11.93601556

12.82877675

0.70121082

-0.80311137

0.86520403

-0.91085074

0.94733571

-0.97792281

1.00437012

-1.02773869

1.04872065

-1.06779386

Table A.3: Constants for f(o)(_).
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APPENDIX B

Iterative Solvers

Iterative solvers are useful for large sparse linear systems since they typically require

considerably less memory as compared to direct solvers such as LU decomposition.

Two iterative solvers are used in this work: the biconjugate gradient and conjugate

gradient squared algorithms. The former is used for the symmetric systems which

are a result of using the FE-BI method or the FE-ABC method in conjunction with

the symmetric ABC (4.32). The latter is used for the FE-ABC formulation which

employs an asymmetric ABC such as (4.25) or (4.27) without any artificial sym-

metry. This appendix will present both algorithms beginning with the biconjugate

gradient. Note that the algorithms presented are do not employ any preconditioning.

Preconditioned versions are readily found in the literature (see for example [52]).

B.1 BiCG Algorithm

The biconjugate gradient (BiCG) algorithm is one member of a family of iterative

solvers which have proven useful in computational electromagnetics [45]. The BiCG

unlike the conjugate gradient (CG) method has the advantage of utilizing only one

matrix-vector product in its symmetric implementation. Although the convergence

characteristics of the BiCG algorithm are erratic (see for example [45]), it often
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convergesin fewer iterations than the CG algorithm. This sectionpresentsthe BiCG

algorithm appropriate for usewith symmetric matrices [46].

Consider the system

[A]{x} = {b} (B.1)

where [A] is a symmetric matrix, {x} is the unknown data vector and {b} is the

excitation data vector. The BiCG pseudocodefollows (assuming an initial guess

{x}, which may be {0}):

Initialize:

= {b}- [A]{x}I

= {b}-[A]{X}l

Iterate:

a n

< {r}., (r}: >
< [A] {P}n, {P}_, >

(X}n+l : (X}n "_ an {p},,

{r}n+, = {r},, - a,, [A] {p},_

< {_}.+1,{_}:+1>
a n

< (r}., (_}: >

{p} = {_}.+1+ c. {p}. (B.2)

where the Euclidean norm is given by

M

< {x},{b} > = y_ x[m]b*[m] (B.3)
rn_l

In (B.2) the subscripts refer to the iteration and the asterisk denotes complex con-

jugation. It is necessary to terminate the iteration when the error present in the
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solution is suitably small. Although the error cannot be directly measured (olhcr-

wisetherewould benoneedto solvethe system), the error doescontrol the corr('ction

factor betweeneachiteration. When the error is large, the correction applied to the

newguessis large while asmall error results in only a small changein tile result from

oneiteration to the next. Many termination criteria havebeenusedin the past. One

of the most popular is

< {r}.+, >
< _ (B.4)

< {b},{b}> -

where _ _< 0.01 is a typical acceptable tolerance. As can be expected, the tolerance

may need to be tightened or relaxed depending on the problem at hand and the de-

sired accuracy of the result. Note that e should be kept small for antenna impedance

computations but can be relaxed for scattering and radiation pattern calculations.

B.2 CGS Algorithm

The conjugate gradient squared (CGS) solver, like the BiCG, does not guarantee

convergence. Unlike the symmetric version of the BiCG algorithm, the CGS requires

two vector-matrix multiplies; however, the CSG solver can be used for either sym-

metric or asymmetric matrices. As is the case with the BiCG solver, the convergence

of the CGS algorithm is erratic; however, it often requires fewer iterations than the

either the BiCG or the CG algorithm. This section presents the CGS algorithm

appropriate for use with either symmetric or asymmetric matrices [52].

Consider the system

[A]{x} = {b} (B.5)

where [A] is a symmetric matrix, {x} is the unknown data vector and {b} is the

excitation data vector. The CGS pseudocode follows (assuming an initial guess {x}l
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Initialize:

Iterate:

{r}l = {b} - [A] {X}l

{7_}1 = {r}l

{p}, = {1}

{q}l = {1}

Pl = 0

(B.6)

(B.7)

(B.8)

(B.9)

(B.IO)

p. = < {÷},,{_}___>

P_/_ -

{u} = {r}__l +Z{q}._,

{p}. = {u}+Z({q}._l +5{p}_-l)

{v} = [Al{p}.

P.
O_ --"

< {eL,{_} >

{q}. = {u}--t*{v}

{w} = {u}+{q}_

{_}_ = {_k-, +_{_}

{r}. = {r}n_l--_[A]Iw} (B.11)

CGS algorithm.

The same termination criterion as was used for the BiCG algorithm is used for the
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APPENDIX C

FFT-based Matrix-Vector Product

The numerical solution of integral equations (IE) (or boundary integrals) is often

performed by converting the IE into a linear system of equations using the moment

method (MM) procedure. The MM solution often requires the generation and storage

of O(N _) matrix entries and, if a direct solver such as LU decomposition is utilized,

O(N 3) operations are required for its solution, where N is the number of unknowns.

If an iterative solver such as the biconjugate gradient (BiCG) method is used, the

solution can be found in O(r. i • N 2) operations where r is the number of right-hand

sides and i is the number of iterations per right-hand side. However, for circulant or

block circulant matrices, the solution may be reached in O(r. i. Nlog_N) operations.

This requires the use of FFTs for computing the matrix-vector products in the BiCG

algorithm and consequently the resulting solution scheme is often referred to as the

BiCG-FFT method. In this appendix, we will present specific examples of this

efficient technique for 2-D and 3-D geometries. We will first look at the relatively

straightforward 2-D problem followed by the necessarily more involved 3-D case.

C.1 2-D Integral Equations

Suppose a fiat resistive strip having width w centered at the origin of the y=0

plane is excited by an E-polarized (TM_) plane wave as shown in Figure C.1. The
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X

Figure C.I: Flat resistive strip geometry.



140

appropriate Electric Field Integral Equation (EFIE

resistive transition condition on the strip giving

E:(x) = n(x)a=(_)+ -_ a=(x')H_2)(<Ix - x'l) d; (C.1)
2

where E'z(Z) is the incident electric field, R(x) is the normalized resistivity as a func-

tion of lateral position, Jz(x) is the equivalent electric cnrrent on the strip induced by

2r

the incident field and ko = _ is the free-space wavenumber. The time dependency

e j_t is assumed and suppressed. In (C.1), the primed coordinate denotes the source

point while the unprimed one indicates the test point. Once the current has been

determined by solving (C.1), the scattered field in the far-zone is given by

<(¢) ~ e-j(k°°-_) - _ r_ , - '
v_ -Zov _ ]__Jz(x )e_o_¢o,+ (c.2)

where Zo is the free-space intrinsic impedance.

We proceed with the numerical solution of (C.1) by expanding the unknown

current in terms of subdomain basis functions as

where

may be formed I)v enforcing llw

W W

W,_(x) = W(x) nAx--_ <<_x<(n+ l)Ax-

= 0 else (C.4)

and Ax - '_

simplest being a pulse (W(x) = 1).

Galerkin's testing, we obtain

o)

2

The weight functions W(x) may assume various forms, one of the

Substituting (C.3)into (C.1) and performing

N-1 w

n 2

f:
(c.5)

N-1

J_(x) = __, J[n]W,,(x) (C.3)
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which is the discrete form of the integral equation. When pulsebasisfunctions are

used.(C.5) becomes

{.+I}A_--_:E2(x)dx

2 nt__O 2

s t_'

ko [(,,+,}A.__ [(,,+,)A._-_ H!2}(kol x x'l)dx'dx}
4 J,_A_- _ J,_'A_:-

(C.6)

where the Kronecker delta function

e[,_- ,,'] = 1 n=n

0 n#n' (c.7)

has been utilized to indicate the self-cell. Assuming that the resistivity is constant

within a segment (e.g. R[n] = R(x) for nAx < x < (n + 1)Am) and making the

w _' X' wchange of variables{=x+g, = +T, wehave

.-,(E{., - df = _ a[.'] R[.]A_<S[,-,-n']+
Jn&x n'=O

ko[{-+,}": [{"'+'}": H?}(kole- (I)<_'<:}
T JnAx Jn'Ax

(c.8)

We now observe that the double integral is in convolutional form and since the

segments are of uniform length (Ax), we may introduce the discrete function

gin - at] ko /{n+l)Ax f(n'+i}Ax H!2)(kol x _ x,i)d(d_
-- 7 JnAx Jn'&x

(C.9)

and rewrite (C.8) as

{"+x)a= E_(_)d {
Ax

N-1 N-1

Ax Y2 J[n']R[n]5[n- n']-4- Y2 J[n']g[n- n']
ril=O nt=o

(C.IO)
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The first sum in (C.10) is recognized as the product of a diagonal matrix (._.kxR[,;i,g!;;-

r_']) and the unknown data vector (.1[,,'].,_' = 0.1.2 ...... V- 1) whereas the seco,,d

sum is a truncated, discrete, linear convolution which may be efliciemlv calculated

using FFTs.

The discrete form of the IE (C.10) may be written as a matrix equation

[Z]{J} = {f} (C.11)

where the excitation vector entries are given by

:f["]

and the impedance matrix is given by

(c.12)

Z[n,n'] = /',xR[nl,S[n- n'] + g[n - _'] (C.13)

Alternatively, in preparing to take advantage of the convolution property, we may

rewrite (C.10) as

[AxRIn]5[n- n']] {J} + [gl n - n']] {J} = {f} (C.14)

Obviously, the first matrix-vector product can be trivially computed in N operations

y[n] = JV[n]Axn[n] n = O, 1,2, ..., N - 1 (C.15)

where the superscript p denotes the iteration. The second matrix-vector product

involves a fully populated matrix and would thus normally require O(N 2) operations

per iteration for its execution. However, since gin - n'] is a discrete convolution

operator, the product may be computed by invoking the discrete convolution theorem

{JP}[9[n-n']] = H[N],._'DI{jFD{JP}o,._'D{g}} (C.16)
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where ,, denotes a Hadamard product and the discrete Fourier transform (DFT) pair

is given by

Ai_- 1

~ -j_rnq

rrl_O

1 M-1

_'/_' {F[q]} -- M E ['[q] ej_'nq
q=O

(c.17)

In practice, a radix-2 FFT algorithm is used which requires only O(Nlog2N ) oper-

ations as compared to the DFT given in (C.17) which requires O(N 2) operations.

The pulse function H[N] indicates that only N of a possible M values of the dis-

crete convolution are retained. Also, the DFT and its inverse operate on periodic

sequences of period M (all sequences with a tilde are periodic in this appendix). For

example, the unknown iterate (JP) is given by

n = 0, 1,2,...,N- 1

n = N,N + 1,N + 2,...,M- 1 (C.18)

It is instructive at this point to examine a couple of fundamental properties of

DFTs and discrete convolutions. DFTs always assume periodic sequences as shown

for example in Figure C.2. In this, a single period of the data sequence to be trans-

formed is indicated by the standard sequence window. This particular data segment

is the one usually provided to the DFT. However, since the sequence is periodic, any

full period sequence window is permitted as shown in Figure C.2. Accordingly, in

the BiCG-FFT method, the user may select which sequence window to use provided

an appropriate mapping functions between the data sequence and the unknowns are

specified. This flexibility may ease the programming task as is discussed below. Com-

putation of a discrete linear convolution via a discrete circular convolution requires

that M >_ 2N - 1 values of the matrix sequence be provided. In particular, these
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I

standard sequence window

Figure C.2: Periodic sequence with even symmetry.
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values must span all possible combinations of source and test unknown imeraclions.

The utility of the BiCG-FFT method rests upon the fact that for certain problems.

a particular redundancy exists within the matrix. For example, suppose the strip

shown in Figure C.1 were divided into N segments numbered consecutively froln left

to right. The resulting matrix will be Toeplitz and there will be N distinct matrix

entries corresponding to the first row of the matrix. The first row can be loaded into

the left half of the standard sequence window shown in Figure C.2. The N th row

of the matrix forms the right half of that sequence and since the matrix is Toeplitz,

the sequence is even symmetric. Thus, the left half of the sequence corresponds to

interactions between a test cell and source cells which are physically to the right of

the test cell. Likewise, the left half of the sequence corresponds to interactions when

the source cells are to the left of the test cell. The first entry in the sequence is

the self-cell contribution. Once again, the data sequence contains the full span of

possible physical alignment between the test and source cells. This example is a case

where the even symmetry replication rule may be applied

= g[n] n = 0,1, 2, ..., N - 1

M

= 0 n=N,N+I,M+2,...,-_-I

M M M

= 9[M-n] n-2' 2 +l,-_-+2,...,M-1 (C.19)

and we have assumed that g[n-n'] = g[n'-n]. As shown in (C.19), if M > 2N- 1 it

is necessary to pad _[n] with zeros in the middle of the sequence. Use of a replication

rule reduces the computational burden to the method since only one row of the matrix

need be computed. For situations where first and last rows of the matrix are not

mirror images of each other (e.g. it matters whether the source cell is to the right or

left of the test cell), an asymmetric sequence is requires as shown in Figure C.3. In
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Figure C.3: Asymmetric periodic sequence.
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this case. all 2N - 1 interactions need be explicitly computed.

The 2-D examples given in this appendix all possess even symmetry. However.

the cross-terms presented in the next section for 3-D problems are not even symmet-

ric. As it turns out however, these terms do have some redundancy which may be

exploited by using a non-standard sequence window in order to reduce the matrix

fill time. The details of such an operation are beyond the scope of this appendix.

Combining (C.15) and (C.16), the matrix vector product in the iteration cycle of

the BiCG-FFT method is efficiently computed as

This computation requires O(N + (M)log2(M)) operations, provided radix-2 FFTs

are used in (C.20), and should be compared to the standard matrix vector product

N-1

[Z]{J p} = _ JP[n']Z[n,n'] n=0, l,2,...,U-1 (C.21)
nt=O

Figure C.4 illustrates the comparison between (C.21) and the discrete convolution

(C.20) computed using radix-2 FFTs. Clearly, for N _> 30, (C.16) is more efficient

than (C.21).

Another 2-D geometry which yields systems which may be converted into circu-

lant matrices is the circular strip such as the one shown in Figure C.5. The EFIE

for a resistive circular strip is given by

koa f_: j,(¢,)H!2 ) 2koa
E_(¢) = R(¢)J,(¢) + --_ 2 sin (¢ - ¢'

(c.22)

where a is the radius of the arc and a is the subtended angle. Note that if the arc

is closed, c_ = 360 °. A discrete form of (C.22) may be obtained by using pulse basis
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Number of Unknowns (N)

Figure C.4: Comparison of operation count for a full matrix-vector product verses a

FFT-based matrix-vector product for a 2-D formulation.
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r'__ /

Figure C.5: Circular arc geometry.
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and uniform zoning (Ao = ,_.). We have

O

f(n+l)A¢ E_(O - _)do

JnAo

J[,, ] R[,-,]_.xo_[,_- ,, ]+
nl:0

t

koa4.1.A_fin+')"_'a,,'",_,f("+,)a_ H(o2) (2boa
sin

(c.23)

which is similar to (C.8). The entries of the Green's function matrix are given by

g[n - n'] - koa4.,,,.,,,_/(n+l)'_J,,',,¢f(n'+')"_H(o2)(2<,

(C.24)

Indeed, (C.23) may be solved in exactly the same manner as (C.8) using FFTs. The

only difference between the flat strip and the circular arc is a possible additional

symmetry present in the Green's function sequence. If the arc is closed (c_ = 360°),

we find that

N

9[N-n] = 9[n] n= 1,2,3,...,y-1 (C.25)

N
which indicates that only 5- ÷ 1 entries of the sequence need be computed rather

than N. Therefore, the solution of (C.23) for _ = 360 ° requires roughly half the

number of matrix entry evaluations as compared to an equal length flat strip. For

c_ < 360 °, a similar symmetry exists to a lesser extent as long as c_ > 180 °. In this

case, although the Green's function sequence (C.24) is periodic, it is incorrect to

assume that (C.23) now involves a circular convolution. The convolution is still a

truncated, linear, discrete convolution and in practice the additional symmetry of

(C.25) is not exploited unless matrix build time is excessive.
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C.2 3-D Integral Equations

As was the case for 2-D geometries, there are certain 3-D geometries which admit

efficient solution methodologies by making use of the FFT-based implementation of

matrix-vector products. Three of these geometries are the flat plate, an impedance

insert in a ground plane and an impedance insert in an infinite metallic circular

cylinder. These geometries are shown in Figure C.6. We shall now proceed with

the formulation for the later two problems (e.g. the planar and cylindrical inserts)

using a general coordinate system. In the following, the general coordinates (u,v)

may be considered as (u = x,v = y) for the planar case and (u = aO, v = z) for the

cylindrical case.

An integral equation may be obtained by enforcing the standard impedance

boundary condition (SIBC)

fi xfi x/_(u,v) = -rlZofix#(u,v) (C.26)

where fi is an outward directed unit normal and the total magnetic field is given by

=  go(u,v)+

× d 'ev' (c.27)

where S denotes the surface of the insert. In (C.27), the surface field fIg°(u, v) is

comprised of the incident field Hi(u, v) and the field reflected by the cylinder when

no insert is present (/_r(u, v)). For the planar geometry, the second kind Green's

function is given by

-- t

-- ,)a:(u-u,v-v = , [ VV] e-Jk°V '(_-_')_+(v-v')_
+ (v-

(c.2s)
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Figure C.6: 3-D geometries: (a) flat impedance insert in a groundplane (or

impedance plate in free-space) (b) impedance insert in a circular cylinder

(2_ = A_).
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where _o is the free-space dyadic Green's function and 7 = _'._ + !).t) + 5.-" is the idem

factor. For a cylinder, the appropriate Green's function is available as an eigenvalue

series [29] for small radius cylinders or as a creeping wave series [36] for large radius

cylinders. Irrespective of the form of G2, upon making use of (C.27) into (C.26), we

have

-zoa × fI"°(u,v) =
x _ x _(_, v)

+
7?

, ')jkoh x G2(u - u v- v • _' x E'(u',v')] du'dv'

(C.29)

We note that for planar geometries, an appropriate right-handed system is (fi, _), fi)

whereas for cylindrical problems, the right-handed system is given by (fi, fi, 7)). Upon

decomposing the fields (N,/_go) and the dyadic Green's function (G2) in terms of

tangential components (fi, _3), (C.29) yields the following coupled set of integral equa-

tions

_ : ZoU_ (u, v) E,,(,,, v)
77

jko fs [E_(u',v')a"=(u- u',v- v' ) -

E,_(u',v')a"V(u - u',v - v')]du'dv'

E_(u,v)
: -ZoH_°(u,v) - +

rl

jko /s [E,,(u',v')G"'_(u- u',v- v' ) -

E,,(u',v')G"'_(u - u',v - v')]du'dv' (c.3o)

To convert (C.30) into a discrete set of equations, we expand the unknown electric

field components in terms of subdomain basis functions

N_-3 N_-2

E,,(u,v) = _., _ E,,[t, slWt_'(u,v)
t=O s=O
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,N', --2 N,,-3

= Z E.[t.s].'?(..,,)
t=O s=O

where A'_ denotes the number of nodes ill the fi-direction and N, is the nunfl)er of

nodes in the i,-direction. As shown in Figure C.7, t denotes the row number of the

edge discretization and s is the column number. For this example, the unknowns are

associated with the free-edges and the associated basis functions may be represented

as

[/V ts / U)u _U_

t$v; (?2,

V -- Vb)

(v, -

0

It r -- ?2)

(72- 72)
(?2,-?2,)

if local edge = 1

if local edge = 2

else

if local edge = 3

if local edge=4

0 else (C.32)

where the local edge numbering is illustrated in Figure C.8. Note that a free edge

is one that is not tangential to any metallic walls and that use of (C.32) requires

a finite element type assembly. For the discretization shown in Figure C.8, there

are (N_ - 1)(N_ - 1) elements and a total of 2N_,N,, - 3(N_ + N_) unknowns. Of

these, (N_ - 1)(N_ - 2) unknowns are associated with the fi-directed field while

(Nu - 2)(N_ - 1) unknowns represent the ,)-directed field.

Substituting the field expansions (C.31) into the coupled integral equations (C.30)

and employing the Galerkin's testing procedure, we have

Nv-3 Nu-2

F.[t,s] = y_ _ E_[t',s'lg_[t- t',s - s'] +
t_=O s'=O

N,,-2 Nu-3

y_. y_ E,[t', s']9,,,[t - t', s - s'] t = O, 1,2, ..., Nv - 3
t_=O s_=O
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(b)

Figure C.7: Rectangular patch discretization: (a) u-directed edges (b) v-directed

edges.
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Figure C.8: Local edge numbering scheme.
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Ft,[t.s] =

._ = O. 1,2 ...... Vu - '2

,_,', -3 Nu-2

_ e_[,'..:lgw[,- _'._,- .,'1+
t'-----O s'=O

/_*t, -- 2 /_,ru -- 3

_ ev[z',_']gvdt- ¢',_-/1 t = o,1.'_,......\;,- 2
t'=O s'=O

s = 0, 1,2,...,N_ _ 3

(C.33)

where

, 6[e - e'] fs W_(u', v')W_(u, v) q=dudv

-Jk°]s Is W_(u"v')W_(u'v)G_V(u-u"v-v')du'dv'dudv
e el

,] 6[e - e'] fs W_(u', v')W_(u, v) dudvg_[t- t',_ - _ = - _1 , ;;::

+jko[ fs w_(_"")w_(_'_)a_(_ - _'' v - v')d_'dv'd_d_
JSe e'

= jkof, £ w_(_',v')W_(_,v)aOo(_- _',v- v')_'ev'e_dv
e e t

g,,,,[t- t',_- 5']

e ¢

Fu[t,s] = Zo /& W,,(u,v)H_°(u,v)dudv

F_[t,s] = -Zo fs, W_(u, v)H_°(u, v)dudv

I f I

W,,(u ,v )W_(u,v)GV'(u - u ,v - v')du'dv'dudv

(c.34)

and e refers to the test element while e' denotes the source element. We note that

each of the double sums in (C.33) is a truncated, discrete, linear convolution and

hence amenable to the BiCG-FFT method.

To proceed, we define the 2-D DFT pair (analogous to (C.17))

M]-1 M2-1
~ --jM._._2(sp+tq)7_o{][,,_]}= E F, z[,,_],

t=O s=O

"T'2/_ {/_[q' P]} -- MllM2 Ml-lt_o=M2-1s=OE/7[q' p]eJM"_'_2(sP+tq)
(C.35)
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[_'sing(C.35). the convolutions in (C.33) can then be rewritten as

All - 1 M2 - 1

t_=O sJ=O

Cc.3 )

The order of the relevant DFTs must be M1 _> 2(number of rows) - 1 and M2 >

2(number of columns) - 1 where the number of rows and columns of the discretization

may vary with each convolution (see Figure C.7). For example, the firsl convolution

in (C.33) is associated with a-testing and a-source edges and hence the number of

rows and columns is (N, - 2) and (.h_ - 1), respectively,. The field sequences are

loaded into a M1 X M2 array in row/column order of tile field discretization and

the remaining entries form a zero pad. The Green's function sequence must be

loaded into a similar array (in the same manner) and periodic replication must be

performed to provide the necessary "negative lags". If the sequence has the property,

g[t - t', s - s'] = 9[t' - t, s' - s], then this replication process takes the form

= 9[ma+2-t,s]

= g[t, M2+2-s]

= g[Mx+2-t, M2+2-s]

ml M2
O<t<---1 0<s<---1

2 - - 2

M1 3/2
--<t<M_-i 0<s<---1

2 - - 2

O<_t<_ M----!-_-I M2 <s<_M2-1
2 2 -

M1 <t<M1 1 M2 < s < M2 1
2 2 -

(C.37)

For the presented example, 9,,,, [t, s] and g,,,,[t, s] possess this property while the cross-

terms, gu_[t, s] and g,,_,[t, s], may not. In the case of a planar insert, the cross-terms

do possess even symmetry due to the use of a symmetric closed form dyadic Green's

function. On the other hand, the cylindrical insert does not have such symmetry since

the equidistant interactions may differ by a sign on account of the form of the dyadic
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Green'sfunction. Forexample, relativeto the first quadrant of the array, interactions

in the secondand fourth quadrants havethe oppositesign while tile third quadrant

havethe like sign. Thesesignsmay be accountedfor by usinga complexreplication

rule and an non-standard sequencewindow. Otherwise, all possiblelags must be

computed requiring longer matrix build time since more than the first ti-directed

and _3-directededgesneedbe usedassources.

Oncethe periodic arrays are loaded, the required matrix-vector product for the

tiff-interactions may be performed in O((MllogM1)(M_logM2)) operations rather

than the O(((N,,- 2)(Nv- 3)) 2) operations required for a standard matrix-vector

product. The comparison is shown in Figure C.9 with M1 = 2(Nv - 3), M2 =

2(N,, - 2) and Nv = N,, = N. Clearly, when the number of nodes per side exceeds

10-15, the FFT-based matrix-vector product is more efficient than a conventional

matrix-vector product. In practice, the FFT-based product is more efficient than a

standard product in terms of wall clock time for N < 10 since in order to exploit the

memory savings afforded by uniform zoning of a convolutional kernel without using

FFTs, additional overhead is incurred to match the appropriate matrix entry with

the correct vector entries. Similar results are obtained for the other convolutions in

(C.33).
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Figure C.9: Comparison of operation count for a full matrix-vector product verses

a FFT-based matrix-vector product for a 3-D formulation. N is the

number of nodes in each direction of the grid, M1 = 2(N-3) and M2 =

2(N-2).
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